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Abstract

The application of the end-to-end principle in the design of the Internet has been funda-

mental to its success. One of the most important advantages of the end-to-end principle is

that it allows the introduction of new services and protocols into the network without re-

quiring changes to intermediate nodes. This greatly reduces the difficulties associated with

developing and deploying new transport layer protocols and network services.

Traditionally network protocol implementations are placed inside the operating system ker-

nel. An alternative to this design found in the computing literature is user-level networking.

User-level networking places the protocol implementation and processing inside the ap-

plication. Among other advantages this design simplifies network stack development and

deployment.

This thesis offers a network stack model based on user-level networking which has the pri-

mary goal of extending the benefits of the end-to-end principle to applications. This model

is referred to as the IP per Process Model. A prototype of this model named Pnet/UNL has

been built and evaluated against the Linux network stack. Performance evaluation shows

this prototype to compare favorably against the Linux network stack on a 100 Mbps network

but the performance gap widens at 1 Gbps.

Keywords: Internet, user-level networking, end-to-end principle, network stack, protocol

implementation.
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Chapter 1

Introduction

Few things have changed the world as fast as the rise of the Internet over the last decade.

This thesis investigates the end-to-end principle which has been critical to the success of the

Internet and argues that this design principle can be used to guide the development of a new

network stack model. This new network stack model extends the benefits of the end-to-end

principle beyond the devices at the end of the network and into the applications executing

on those devices.

1.1 A Look at Two Networks

At this point in time there are essentially two global networks: the PSTN and the Internet.

Comparing the basic architecture of these two networks is very interesting because they

embody very different ideas about how a network should function.

1.1.1 PSTN

The public switched telephone network (PSTN) has been in existence for over one hundred

years [18]. It is the PSTN which carries phone conversations between people all around

the world. Despite its age and the rise of the Internet the PSTN still effects the daily lives

of millions of people. Quite likely even more so than the Internet. At a high level the

PSTN consists of two major components, the telephone and PSTN switches. The telephone
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Figure 1.1: The PSTN

functions as the user attachment point or the end of the network. The interface between

the PSTN switch and the telephone consists of a pair of copper wires and an analogue

signal representing the audio. Such a simple interface limits the richness and complexity

of the communication between the phone and the PSTN switch. The result is that while

telephones now have features such as address books, call display and answering machines

the fundamental simplicity of the phone has not changed. The carrier PSTN switches on

the other hand are very large, costly and complex devices which have evolved extensively

since their introduction. The role of the PSTN switch is to establish a connection between

the source and destination phones. Originally this meant physically connecting the wires at-

tached to the phones; this was a job done by human operators. Later the switching operation

was automated but a dedicated copper path between the two phones was still established.

As technology advanced the PSTN switch became responsible for digitizing the analogue

voice signal for transmission to other switches. The final switch on the path was responsible

for reconstituting the analog signal for transmission to the destination phone.

The PSTN follows a smart core, dumb ends network model. Consider the process of calling

a remote party on the phone. The caller enters the phone number which is then communi-

cated to the local carrier switch via a set of audible tones. These tones are carried on the

same audio channel as the voice communication. After receiving the destination number

the local switch establishes a call path through any necessary intermediate switches and

eventually the destination phone. Along this call path network resources are dedicated and

state information is maintained for the duration of the call. It is the responsibility of the

network itself to maintain call quality and ensure no information is lost. The phone on the

other hand, simply transmits its analog signal and plays no active role in assuring that the

audio information reaches the destination phone. In fact, the two phones on a given connec-

tion are not actually communicating directly because the digital data transmitted through
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the modern PSTN bears little resemblance to the analogue signal transmitted by the phone.

The PSTN is a prominent example of the dumb end, smart core network model. While this

model does have the advantage of making the end device very simple and thus a very low

cost item, the negative side effects of this design choice effect the utility of the network and

its ability to add new services.

In some sense the lack of new features and services introduced into the PSTN is surprising

given the elapsed time and the importance of the PSTN to society. This stagnation can in

large part be explained by the chosen network model, smart core and dumb ends. Imagine

the process of adding a new unreliable, low-quality video multicast service to the PSTN.

The first challenge the designers of this new service would encounter is that the PSTN

does not offer an unreliable mode of operation. An unreliable data transmission mode is

desirable because the designers would not want to burden the network or the source with

data retransmission since video streams can tolerate lost packets. Adding an unreliable data

transmission mode requires adding the necessary features to the PSTN switches. Unfortu-

nately for the designers of this new service, data traveling through the PSTN must cross

several different switches which are often manufactured by different companies and owned

by different carriers. Now the task becomes not only designing the new service but con-

vincing the PSTN switch manufacturers to implement the feature. It is unlikely that these

companies would be willing to implement any new feature without demand from their cus-

tomers, the carriers. The situation the video service designers find themselves in with the

carriers is no better than found with the switch companies. The carriers have no interest in

asking for switch support or even offering a new service unless it can be assured the invest-

ment will yield some return. Here again we find a catch-22. It is unlikely this new service

will be profitable unless it is available to a large portion of the PSTN network users. As a

result, unless either a switch company or service provider decides to take a large risk, this

new service will never be deployed. This discussion has not even touched on the difficul-

ties of upgrading the communications channel between the local switch and the phone and

replacing the phone itself. There is a second aspect of the smart core, dumb ends network

model that also needs to be discussed. That aspect is control. This network model places

all control in the hands of the PSTN service providers. No new service or feature can be
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Figure 1.2: The Internet

offered on the PSTN without the permission of and implementation by the service provider.

The deployment of new services which hurt existing revenue streams is unlikely as is the

deployment of any service without a clear profit model. Worse, even if a single carrier could

be found to implement a new service the ubiquitous nature of other PSTN services could

not be achieved without the cooperation of every PSTN service provider in the country or

even the world. In short, the smart core dumb ends network model forces an entire industry

consisting of equipment manufacturers and service providers to agree upfront on any inno-

vation. This model also places control of innovation in the hands of organizations who may

have the most to lose from truly disruptive change.

1.1.2 Internet

The Internet functions on a model opposite to that of the PSTN. The PSTN is a smart core,

dumb ends network. The Internet is a dumb core, smart ends network. This is somewhat

counter-intuitive because the Internet appears to be a very intelligent and advanced network

and there are certainly more services offered on the Internet than on the PSTN. The key

aspect is not the overall intelligence or utility of the network but the placement of that

intelligence.

Continuing the high level overview found in the PSTN section, the Internet can be con-

sidered to consist of two main components: end nodes and routers. End nodes are any

device attached to the Internet which can send and receive data using the Internet Proto-

col (IP). Throughout most of the Internet’s history end nodes consisted of devices that are



5

considered to be computers. As the Internet has become more ubiquitous the variation in

the design and capabilities of Internet end nodes has increased to include mobile devices,

cameras and other devices. For the purposes of this discussion the key aspect of all of these

devices is their complexity. Any device which can send and receive IP traffic is much more

complex than the PSTN phone. IP capable devices require the ability to break data into

small units for transmission, buffer data and perform simple error detection. These are all

capabilities well beyond the standard phone. The second component of the Internet in this

high level overview is the Internet router. Internet routers play a role roughly analogous

to PSTN switches. Here again the main difference is the level of complexity. The Internet

appears reliable to most users but in reality the service offered by the Internet to its users is

unreliable. There is no guarantee that the data sent by a node into the network will arrive at

the destination at all let alone without errors or within certain time constraints. This simple

model is accomplished by attaching a source and destination address to the data sent into

the network. Routers look at the destination address and then forward the packet to the

next router on the path to the destination. Notice that unlike the PSTN a path of dedicated

resources is not created between the sending and receiving nodes. This allows routers to be

conceptually simple devices whose main operations are a look-up of the destination address

in a table to determine which outgoing port to transmit the packet on and the transmission

of the packet.

Internet users take for granted the amazing variety of services available. It is not immedi-

ately obvious that it is the smart ends, dumb core design which allows these services to be

developed and innovation to flourish on the Internet. Imagine adding the unreliable video

service that was discussed in the PSTN section (1.1.1) to the Internet. The designers of this

new service have an immeasurably easier time getting it deployed on the Internet than they

did on the PSTN because no intermediate network nodes require modification. No router

vendor needs to be convinced of the service’s utility and no ISP needs to be convinced of

the service’s profitability. Instead the application can be written and deployed on only those

network end nodes that wish to use the service.

A real world example of innovation on the Internet can be found in the World Wide Web

(WWW). Most current Internet users use the terms Internet and WWW interchangeably.
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The reality is that these two things are different. The Internet is the global IP network

consisting of end nodes and routers. This network can carry any data capable of being

layered on top of the IP protocol. The Internet is much older than the WWW and can be

considered the medium on which the WWW is built. When Tim Berners-Lee came up

with the idea of URLs to uniquely identify documents and HTML to allow links between

those documents thus creating the WWW he was not required to get permission from router

vendors to implement this new idea. Nor was he required to obtain permission from ISPs

or the manufactures of the equipment that would run this new service. Instead he was able

to write the first versions of these important technologies and deploy them on individual

nodes around the Internet. A more recent example of this phenomenon can be found in the

proliferation of Instant Messaging (IM) services on the Internet in recent years.

1.2 The End-to-end Principle

The end-to-end principle [44] is the guiding idea behind dumb core, smart end networks

such as the Internet. In short, the end-to-end principle says that as much complexity as pos-

sible should be placed at the end or edge of the network and as little complexity as possible

should be placed in the core or intermediate nodes. By making the core of the network

simple little is assumed about the behavior of the applications which will use the network.

This allows the network to support a wide variety of services without modification. Low

complexity in the intermediate or core nodes of the network also greatly increases scala-

bility because the fundamental operations of these devices are simple and do not require

per connection or per node state information. Benefits also accrue from the placement of

the complexity at the end of the network. It is only at the end of the network where major

changes such as new protocols and services can be introduced quickly and easily because

changes at the end of the network do not effect other network nodes.

An interesting way to conceptualize a true end-to-end network is as a sphere with all nodes

of the network existing on the surface of the sphere with the distance between each of the

ends being very close to zero [45]. That is, an end-to-end network provides a virtual direct
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connection between all nodes in the network.

It is important to understand that being able to communicate with other nodes on an end-to-

end network does not necessarily imply true end-to-end functionality. In fact a large portion

of the nodes on the Internet today do not enjoy the benefits of the end-to-end principle. The

reason for this is the proliferation of Network Address Translation (NAT). NAT was origi-

nally conceived as a short-term solution to the shortage of globally unique IPv4 addresses

[7]. It was thought NAT would be only deployed until IPv6 or another protocol with a

larger address space came into common use. Unfortunately, for many reasons including

the delayed deployment of IPv6 and the use of address conservation methods such as NAT

itself and Classless Inter Domain Routing (CIDR) [13], NAT has become a common part

of the present Internet architecture.

NAT enables inter-node communication without requiring globally unique addresses by

making use of higher layer protocol information to route packets towards their destination.

When NAT is not used on the path between two network nodes the destination IP address

is all the information that is required by intermediate routers to forward the packet towards

its destination. However, when NAT is involved five pieces of information are required: the

source and destination IP addresses, the transport protocol identifier and the transport layer

source and destination port numbers (see figure 1.3). In order for the NAT process to occur

all packets must pass through a device often referred to as a NAT gateway or NAT router.

These devices have at least two network interfaces. One of these interfaces is attached to

the global Internet and is assigned a globally unique IP address and the second interface is

connected to the devices which do not have globally unique IP addresses.

Before discussing the negative effects of NAT it is important to acknowledge the benefits

that are driving its adoption. The most obvious benefit is reduced address consumption.

A potentially large number of end nodes can all be placed behind a single globally unique

address. Related to address consumption is the fact that many Internet Service Providers

(ISPs) charge for IP addresses. Many households and businesses now contain many IP

enabled devices. NAT allows the use of many devices without increasing the service cost.

NAT is also often incorrectly associated with increased security since it is impossible to
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Figure 1.3: Packet Fields Used in Routing and NAT

address packets to network nodes behind a NAT gateway. This behavior is taken advantage

of to provide a firewall which limits communication to internal nodes. In reality this type

of security can be easily accomplished with a stateful firewall without the problems caused

by introducing NAT into the network.

In order to understand the behavior of NAT there are two cases to examine. The first case is

when a node behind the NAT gateway opens a connection to a node on the other side of the

NAT gateway. From the standpoint of the initiating node this communication is no different

than if NAT was not present on the network path. In reality the NAT device is capturing

each transmitted packet and rewriting the source IP address and portions of the transport

layer information. This operation requires rebuilding the protocol headers and recalculating

the error detection checksum in both the IP and transport layer headers. These operations

are more complicated than simple IP routing. The second situation to consider is a remote

node wishing to initiate communication with a node behind a NAT gateway. This situation

is much more complicated because the NAT gateway cannot move packets towards the

destination node based on the IP destination address field alone. In fact, the destination IP

address will be the globally unique IP address assigned to the NAT gateway.

The negative aspects of NAT can be summed up into one fact. NAT breaks the end-to-end

model of the Internet. One of the key aspects of the end-to-end principle ignored by NAT

is maintaining as little state information in the network as possible. Data communication

occurring through a NAT device is completely reliant on the state information in the NAT
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device. If the traffic flows through another path bypassing the NAT device or if the device

loses its state information due to a power failure the communication channel is destroyed.

In contrast when only routers are in the path any single router can fail without necessarily

causing communication difficulties because packets may take another path to the destina-

tion. The centralization inherit in a NAT network can also be a performance problem. If

the NAT device runs out of memory to maintain the state table or if it cannot perform the

address translation at the required data rate then communication performance will be ad-

versely effected. A second important aspect of the end-to-end principle as it is applied to

the Internet is the ability to use any transport protocol or service on top of the IP protocol.

This is possible because IP routers do not inspect any fields outside of the IP header. How-

ever, when NAT is involved higher layer protocol information is also required. This forces

the NAT device to have some understanding of the higher layer protocol in order to obtain

the information required to forward the packet. As a result nodes behind a NAT gateway

are limited to using only those layer four protocols that the NAT gateway supports.

The above are only the most obvious problems caused by the loss of end-to-end connectiv-

ity between nodes when NAT is in use. Less obvious is the significant additional complexity

forced onto application and operating system developers in order to work around problems

introduced by NAT. Many applications and services on the Internet are now being aug-

mented with real-time media capabilities. The addition of voice and video chat to instant

messaging services such as AIM, Jabber/XMPP and MSN Messenger provide examples of

this trend. These media streams can consume a significant amount of bandwidth and are

latency sensitive. These features make it desirable for the media stream to be sent directly

between the two communicating nodes avoiding the additional latency introduced by pass-

ing data through a third node. When both ends of the communication have globally unique

IP addresses establishing a connection for direct media transmission is easy. The node initi-

ating the media stream can open a listening socket and then send the remote application its

IP address and a port number. The second node can then simply open a connection to this

IP address and port number. When the node opening the listening socket is behind a NAT

gateway the situation is much more difficult because the node’s IP address is not globally

unique. This makes the IP address sent to the second node useless. Even if the IP address
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was useful the NAT gateway still would not have the required port mapping to direct the

received packets to the appropriate internal node. As a result of these problems many NAT

devices contain special support for protocols that pass IP addresses between hosts in order

to rewrite the IP addresses as the data passes through the NAT gateway.

Working around the problems introduced by NAT has become very important to both ap-

plication and operating system developers. As a result many network applications now rely

on technologies such as UPnP [55], STUN [41], ICE [43] and TURN [42] to successfully

communicate when NAT is in use on the network path. While it is true that these techniques

can be implemented by the operating system or as shared libraries for use by application

developers they still add a significant amount of complexity that is simply not necessary

when true end-to-end connectivity is in place.

1.3 The Kernel Network Stack

Network protocol implementations are usually referred to as network stacks in reference to

the layered model used to describe many protocol architectures. See figure 1.4 for the Open

Systems Interconnection (OSI) and Internet network layers [33, 26]. Conceptually each

layer encompasses a certain type of functionality. The physical layer defines the electrical

or optical signaling on a communication medium such as copper wire or optical fiber. The

data link layer is used to describe protocols such as Ethernet which allow the communi-

cation between two hosts on the same network. Layered on top of the data link layer is

the network layer. This layer describes protocols which allow hosts on separate networks

to communicate. The IP protocol is perhaps the most most famous example of a network

layer protocol because it is now used to connect millions of smaller networks around the

globe.

While the layered network protocol model provides a useful basis for the discussion of net-

work protocols not all protocols fit nicely into a single layer. TCP for example encompasses

both the session and transport layers of the OSI model. Also note that the Internet defines

the protocol layers differently than the commonly mentioned seven layer OSI model (see
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Figure 1.4: The OSI and Internet Network Layers

figure 1.4).

By far the most commonly deployed network stack design is the in-kernel design. This

design places the network protocol implementations within the operating system kernel.

The in-kernel network stack design consists of three main components: the network in-

terface (NI) driver, the implementation of the network protocols and the application itself

(see figure 1.5). The first two of these components are part of the operating system ker-

nel. The NI driver is generally a protocol independent component which is responsible for

communicating directly with the NI hardware. When a data frame is received by the net-

work interface it will raise a hardware interrupt which results in the execution of the device

driver’s interrupt handler. The interrupt handler then either copies the data from the NI into

main memory or arranges for a direct memory access (DMA) transfer to move the received

data frame into memory. Once the received packet has been moved from the network in-

terface into memory protocol processing can occur. Older network stacks perform protocol

processing within the interrupt handler immediately after the packet has been moved into

memory. This design however leads to a major performance problem called livelock [39].

Livelock occurs because interrupts are usually the highest priority task within the operating

system kernel and thus performing complex processing in interrupt context can block the

execution of other important tasks. More modern in-kernel network stacks perform proto-

col processing within a lower priority process to avoid this problem. The primary task of
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Figure 1.5: Kernel Network Stack

the protocol implementation is to determine which application the data is destined for and

after performing the protocol processing, placing the data into a buffer where it can be read

by the application process.

The most common interface to the kernel network protocol stack is the sockets application

programming interface (API). The sockets API presents the application with an interface to

the network which is very similar to file I/O. When a packet is received the kernel retrieves

the data from the network interface and performs the necessary protocol processing. The

application is then able to obtain the received data by executing the read system call on

the socket. A similar process happens when an application wishes to transmit data. The

application writes the data to a socket buffer via the write system call. The kernel looks after

packaging the data into protocol data units (PDUs) for transmission to the network. Notice

that the sockets API and the in-kernel network stack severely limit how the application

interacts with the network. By only allowing the transport layer payload to pass between

the application and the kernel network stack it becomes impossible for applications to use

any network protocols not supported by the kernel network stack.

Imagine the development of an application that would see benefits from utilizing a cus-

tom network stack. The benefits could come from a new transport protocol, a slightly

modified transport protocol or even just a new API to interact with existing protocols. Us-

ing the in-kernel model the developer is forced to make these network stack modifications

to the operating system kernel. Since the required source code is not available for some

commercial operating systems modifying the network stack in any significant way may be

impossible. Even when the required source code is available the task is still very difficult.

One of the reasons for this difficulty is the lack of development tools equivalent to the ones



13

available for user-space development. Depending on the operating system tools such as de-

buggers, memory validators and profilers are more difficult to use or are non-existent when

developing in kernel-space. Development time is also significantly increased due to the

requirement that the kernel be restarted to test new code. This requires a complete system

reboot or at minimum a virtual machine restart. Finally, reliability is also a major concern

for in-kernel network stacks. Any fault has the potential to bring down the entire system

not just the application using the new features.

Even if the application developer is willing to go through all of the work required to create

a custom network stack or a new protocol implementation the developer is now limited to

deploying the application on a single operating system because network stack implementa-

tions are not easily moved between operating systems. The reason for this is the lack of a

standard API analogous to the POSIX APIs [20] which would make a protocol implementa-

tion portable across kernels. Worse, some operating system kernels provide no guarantee of

API or binary stability between versions of the same kernel. Linux is perhaps the strongest

example of this [24]. It is not uncommon for the function signatures and data structures

within the Linux kernel to change between minor releases. This rapid change within the

operating system kernel forces the custom network stack developer to keep pace with the

rest of the kernel development in order for the new features to continue to work on future

operating system releases. There has been some work on making protocol implementations

portable across operating systems. In [25] the authors investigate the difficulties associated

with this problem. One solution to this problem is the Base system presented in [15]. Base

provides a virtual environment for the execution of network protocol code. This allows

protocol code to be written once and then easily executed on another operating system as

long as the virtualized environment is present. Despite the work in this area these features

are not found in current commodity operating systems.

According to [22] the centralized in-kernel network stack also introduces performance

problems on symmetric multiprocessing (SMP) and multicore systems. On traditional com-

puter systems with only one CPU the fact that all protocol processing goes through one

central kernel subsystem does not effect performance because only one task can be execut-

ing at a time. However, the current trend is towards SMP and multicore systems. In order



14

to manage concurrency and obtain the performance benefits of the larger number of pro-

cessing units network stacks must introduce complicated data structures and fine grained

locking. From Amdahl’s law [1] we know that systems do not scale linearly when some

portion of the system is not parallelizable. As a result it is difficult for in-kernel protocol

implementations to scale with the number of processors. This combined with the cost of

locking in terms of negative cache effects makes the centralized nature of the in-kernel stack

a performance problem.

Despite the difficulties involved in creating a custom network stack or a new protocol im-

plementation and the fact that the implementation will be tied to a particular operating

system kernel it is possible for the application developer to deploy new protocols if desired.

However, the difficulty for both the developer and the user of the new software makes this

unlikely to happen. Very few applications intended for mass distribution can require modi-

fication of the underlying operating system. The next section of this chapter introduces two

standardized transport layer protocols which offer many advantages to application develop-

ers but see little use on the Internet. These protocols may be deployed more widely if the

development and deployment of transport protocols was easier.

1.4 Alternative Transport Protocols

In the five layer Internet protocol architecture the transport layer is the layer on top of

which application data is added. The overwhelming majority of transport layer traffic on

the Internet is either transmission control protocol (TCP) or user datagram protocol (UDP).

TCP provides a reliable byte-stream oriented service which guarantees the in-order delivery

of data. As the only reliable transport layer protocol in common use TCP is used for many

services including HTTP, SMTP and most instant messaging services. UDP provides an

unreliable datagram service that does not guarantee data delivery in order or otherwise.

UDP is most often used where either the loss or reordering of data is acceptable or for very

short transactions such as DNS requests where the overhead associated with establishing a

TCP connection may be prohibitive.
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In terms of Internet time both TCP and UDP were defined a long time ago. TCP was

defined in RFC 793 in 1981 [36] and UDP in RFC 768 in 1980 [37]. Since that time there

has been a lot of work on the TCP congestion control algorithm but the protocol itself has

seen very little change besides the addition of a few protocol options [21]. UDP has seen

even less change but given the simplicity of the protocol this is hardly surprising. From the

lack of change in TCP and UDP and the limited use of other transport protocols one might

assume that there is no desire for significant change at the transport layer. Upon further

investigation is it is clear that this is not the case. In fact, there are several transport layer

protocols which have been defined in RFCs similarly to UDP and TCP but which have not

seen wide deployment.

The stream transmission control protocol (SCTP) [51] is one example of a new transport

protocol which could replace TCP in many situations. SCTP is a reliable transport protocol

which was originally conceived for use as a signaling protocol within telecommunications

networks. SCTP offers several features not found in TCP. The most obvious of these fea-

tures is a records based architecture. TCP is a byte-stream protocol. That is, TCP ensures a

simple byte-stream is transmitted to the remote end but it does not see any structure within

that byte-stream. Data is delivered to the receiving process when the number of bytes re-

ceived reaches a set threshold. This complicates application development because the size

of reads on the receive side does not necessary match the size of writes on the send side.

As a result the receiving application may receive partial records when reading and would

then be forced to store the partial read for use when the rest of the data arrives. SCTP on

the other hand allows the application to delineate message boundaries within the stream.

The receiving protocol implementation is then able to pass these individual messages to the

application when they have been completely received. Another interesting feature provided

by SCTP is virtual connections within a single connection. This feature allows two com-

municating peers to essentially mark parts of the communication as being separate logical

communication channels. For instance a single SCTP connection may be used to transmit

both signaling and media data and the receiving application can choose to read from ei-

ther virtual connection. Although virtual connections could be accomplished using a single

TCP connection it would require the application to delineate portions of the data stream.
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However, the byte stream nature of TCP makes it impossible for the receiving application

to read from a virtual connection of its choice as data is only passed to the application in

the same order it was sent. SCTP is also capable of multihomed operation which allows

two nodes with more than one communication path between them to use the second path

for redundancy. Although SCTP offers many features that benefit both the user and the

application developer applications which make use of SCTP are hard to find.

The datagram congestion control protocol (DCCP) is another example of an interesting

transport layer protocol which is seeing little use at the present time. DCCP is similar to

UDP in that it is not connection oriented and it is an unreliable protocol. What DCCP adds

to datagram based delivery is congestion control that is TCP compatible. Many latency

sensitive applications such as streaming media and gaming make use of UDP instead of

TCP. The reason for this is that while UDP packets do not travel any faster through the

Internet than TCP packets, latency sensitive streams see performance benefits using UDP

because UDP does not enforce in order delivery like TCP does. This allows lost packets

to be ignored instead of adding latency to the data delivery as the missing piece of data

is retransmitted. The rising amount of UDP data poses a problem for the Internet in that

TCP data flows are nice to the network in the presence of congestion while this is not true

of UDP packet flows. TCP responds to data loss by reducing the transmission rate. This

model generally assumes that packet loss is a result of network congestion. By backing off

the transmission rate, congestion and the resulting packet loss can be avoided. Most UDP

applications on the other hand ignore packet loss and continue to transmit packets at the

desired data rate. This can be a problem since many media streams have a relatively high

and constant data rate. The fear is that a large number of UDP packet streams which do not

have congestion control behavior could cause a congestion collapse of the network [11].

By adding TCP compatible congestion control DCCP allows datagram based applications

to also respond to network congestion. DCCP is defined in RFC 4340 [23] dated March

2006.

The existence and standardization of SCTP and DCCP shows that there is room for im-

provement in the Internet’s transport layer protocols. Given the end-to-end design of the

Internet one might expect that it is easy to deploy new protocols such as these on the Inter-
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net. Unfortunately, there are at least two common situations where the end-to-end nature

of the Internet is broken making the deployment of new transport protocols a much harder

problem than it would be on a truly end-to-end network. The first such situation comes

from the existence of NAT in the network. The problems associated with NAT have already

been discussed and are not the focus of this thesis. The second situation comes from diffi-

culties associated with developing and deploying new protocols and custom network stack

software using the in-kernel network stack model.

1.5 The Application as the End of the Network

The end-to-end principle is a powerful design principle that brings simplicity, scalability

and the ability to easily deploy new applications and services to a network architecture

such as the Internet. The ends of the Internet are usually considered to be the devices which

do not forward packets for other network nodes. By this definition the normal laptop com-

puter, server and mobile device are all considered end nodes while a router obviously is

not. This definition of an end node encompasses the device hardware, the operating system

and any applications executing on the operating system. Given the in-kernel network stack

architecture used by most Internet end nodes a more accurate definition of the ends of the

Internet may be the operating system kernel itself. It is the in-kernel protocol implemen-

tation that is the consumer and originator of all network packets. This is made more clear

by the fact that applications can only interact with the network via the very limited sock-

ets interface. This restricts most applications to simply being a source and sink for data

transferred via the network not an actual component of the network itself.

The strange thing about considering the operating system kernel the end of the network is

that the kernel is very seldom the true source or destination of any network communication.

The kernel exists to manage the hardware resources for its hosted applications. By itself

the kernel does not offer useful services to external entities. Consider managing a server

through the Secure Shell (SSH) protocol. The destination of the network communication

is the SSH protocol daemon not the operating system kernel. It is the SSH daemon that
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executes the command shell process that allows the administrator to manage the system.

The commands executed within this command shell may request a service from the kernel,

perhaps loading a file from disk but this has little to do with the actual SSH network protocol

connection. Similarly when a web browser requests a file from an HTTP server it is not

interested in communicating with the remote kernel. Rather it is asking the HTTP server

process for a service. This HTTP server process may itself request that the kernel load a

file or perform some other hardware related task but this is irrelevant to the web browser

requesting the file.

Since applications are the true consumers and originators of data transmitted through the

network it is the applications themselves which should be considered the ends of the net-

work not the operating system kernels upon which they are executed. This insight may seem

strange but it is not new [14]. When the application is considered the end of the network the

common in-kernel network stack architecture becomes a major impediment to end-to-end

connectivity. The reason for this is that the in-kernel network stack isolates the application

behind the in-kernel protocol implementations thereby making it impossible for the appli-

cation to deploy custom network protocols or even a customized network stack. One way

to conceptualize this idea is to consider the kernel a node in the network which allows only

select data to pass through. This has the effect of destroying end-to-end connectivity to the

applications at the end of the network.

1.6 Thesis Focus

Although the widely deployed in-kernel network stack architecture does not give applica-

tions end-to-end connectivity this thesis takes the view that applications should also enjoy

the benefits of end-to-end connectivity. This thesis offers an alternative network stack ar-

chitecture which reduces the operating system kernel’s interaction with network traffic to

that of an IP router. At the same time the application is given the ability to transmit and

receive entire IP packets making it a true part of the network and thereby creating true end-

to-end connectivity for applications. This new network stack architecture is referred to as
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the IP per process model.

The remainder of this thesis is organized as follows. Chapter 2 introduces the concept of

user-level networking and describes previous work in this area that is related to this thesis.

Chapter 3 describes the IP per process network stack architecture which brings end-to-end

connectivity to applications. This chapter also discusses the advantages and consequences

of this new architecture. Chapter 4 introduces a prototype implementation of the IP per

process model. This prototype consists of two parts: a Linux kernel module named Pnet

and a user-level network protocol library named UNL. Chapter 5 presents a performance

evaluation of the Pnet/UNL prototype. Finally, chapter 6 presents conclusions and ideas for

future work in this area.



20

Chapter 2

Related work

In order for the application to be a true part of the network it must be capable of process-

ing and generating its own network packets. The technique of placing network protocol

processing within the application process is usually referred to as user-level networking.

User-level networking has existed in the computing literature since 1993 [53]. Since user-

level networking is key to the network stack design presented in this thesis the many user-

level networking projects discussed in the computing literature form the work most closely

related to this thesis.

User-level network stacks can be implemented as a shared library to which the application

can link against at runtime. This architecture allows the reuse of the protocol implemen-

tation by several applications just as a single GUI toolkit library may be used by several

applications on a single system. Although there are many possible reasons to use user-level

Figure 2.1: User-level Networking
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networking there appears to be four primary goals which drive the development of most

user-level networking implementations. These four goals are: performance, maintenance,

customizability and ease of development.

2.1 User-level Networking for Performance

There is an enormous disparity between the relative performance of CPUs and the memory

subsystems in commodity computers [30]. In the context of network stacks this disparity

means that it can take longer to load the packet data into the CPU to be operated on than the

time required for the actual protocol operations. As a result large performance benefits can

be realized if the required data is still in the cache hierarchy when it is needed. This fact

makes the avoidance of cache misses incredibly important to any network stack design.

Traditional in-kernel network stacks use three separate contexts. The first moves the data

from the network interface into the main memory. The second performs protocol processing

and queues the data into the application’s socket buffers. The third context is the application

itself (see figure 1.5). Between each of these contexts the operating system kernel makes

a scheduling decision. If the scheduled task is the next step in the protocol processing, the

packet data will still be in the cache hierarchy thereby saving the relatively large amount of

time required to load it from main memory. If the next scheduled task is not the next step in

the protocol processing or if the task is scheduled on a different CPU it is much more likely

that the data will be flushed from the cache as the subsequent tasks may use the same cache

lines. For example, an application which is not scheduled immediately after the protocol

processing is complete may be forced to load the packet data from main memory again

even though the kernel performed the same memory loads recently. User-level networking

places the network stack into the same context as the rest of the application. The result is

that an application which consumes the data immediately after the protocol processing is

complete should almost always find the data in the cache hierarchy. This will provide a

performance benefit. Of course the operating system can preempt an application process at

any time to execute another process so this will not always be the case.
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Another performance related benefit of user-level networking comes from the ability to

avoid the operating system kernel completely. This has the advantage of removing the

overhead of context switches and the associated cost of cache flushes. The typical approach

is to give the application some form of direct access to the network interface which does

not require interaction with the operating system kernel. These designs often involve cus-

tom network interfaces which contain more intelligence than a standard Ethernet network

interface.

As discussed in section 1.3 the in-kernel network stack can be a performance and scalability

problem on SMP and multicore systems because it is a point of centralization. User-level

network stacks on the other hand do not share any state information between instances so

the lock contention problems created when using the in-kernel network stack will not exist.

Notice that is this actually an end-to-end argument. By pushing the processing out to the

application little state information needs to be maintained in the kernel.

2.2 User-level Networking for Customizability

One of the major downsides to the in-kernel network stack model is that it is a one size

fits all solution. All applications choose from a very limited selection of transport protocols

and are essentially forced to use one interface, the sockets API, for all network communica-

tion. In contrast user-level implementations can allow for almost any aspect of the network

stack to be customized. The only constant is the interface between the application and the

network. Depending on the user-level implementation this interface could be as simple as

passing complete IP packets making it is no more limiting than a physical network interface.

Perhaps the most obvious point for network stack customization is the transport proto-

col. This could include deploying a more advanced standardized protocol such as SCTP

or slightly modifying TCP for better performance in a particular environment. For exam-

ple TCP reacts to packet loss by slowing the rate at which it sends new data. This model

assumes that packet loss is the result of network congestion. However, some network tech-

nologies, wireless links in particular, are inherently lossy. When operating on networks
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like this TCP will not be successful in reducing the number of lost packets by slowing the

transmission rate. Instead throughput is reduced without reason. User-level networking

makes it possible for the application developer or administrator to easily switch to a TCP

variant with very different congestion behavior when the situation demands. Perhaps the

most interesting possibility for user-level network is the ability to deploy domain specific

transport protocols. Such a protocol could be tuned for a specific environment or designed

to have exactly the features required for a demanding application.

Moving network protocols into user-space also gives the application the ultimate decision

about which packets should be processed. An application could choose to process packets

and do any associated work from a high priority connection before a lower priority one.

One possible application of this technique would be to prioritize the processing of media

packets for one of multiple senders in a multimedia conference application. Using the in-

kernel model the application could choose to ignore data from a low priority sender but

the CPU time required for layer three and four protocol processing will have already been

consumed.

A less obvious place to customize the network stack is with the use of application specific

information [53]. TCP’s byte-stream abstraction forces all data to be acknowledged. How-

ever, there may be situations where the application messages alone indicate the receipt of

data making the transport protocol’s acknowledgments unnecessary [14]. Another com-

mon use of this technique may be for the application to send a single packet instead of two

smaller packets. This would be possible if the application was expecting information to

arrive soon which would change or add to the outbound data. By delaying the transmission

for a short time the application can amortize packet header overhead which can by very high

for small packets. In-kernel implementations of the TCP protocol use a heuristic called the

Nagle algorithm [50] to accomplish this.

The sockets API provides a convenient high-level interface to the in-kernel network stack.

There is no reason this API could not be duplicated by a user-level network stack in order

to achieve compatibility. However, some applications may benefit from a different API.

One possible option is the use of share semantics. The sockets API uses copy semantics
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which means that when data is written to or read from the socket buffers a copy is made.

The advantage of copy semantics is simplicity. After writing the data to the socket buffer

the application is free to reuse the buffer and not concern itself with the kernel’s opera-

tions. Similarly the kernel is free to reuse the socket buffer once the data has been copied

into user-space. The downside of copy semantics is the performance cost. Copying data

is a relatively high cost operation. This is especially true in current systems where the

gap between CPU performance and memory bandwidth is quite large [30]. Data copying

coupled with the very high data rates found in one gigabit and ten gigabit commodity net-

works leads to a situation where the network throughput bottleneck is memory bandwidth

not CPU resources. According to [12] data copies and the checksum operation account for

41% of TCP’s resource consumption. Share semantics essentially passes references to data

buffers instead of copies of the data buffers. This allows the copy operations to be avoided

but the cost is more complicated accounting of buffer usage. It is also interesting to note

that the ability to use the virtual connections and the records based capabilities of the SCTP

protocol also require changes to the standard sockets API [52]. It is quite possible that any

transport protocol which differs significantly from TCP or UDP may require some amount

of API change.

2.3 User-level Networking for Ease of Development

As discussed in section 1.3 protocol development using the in-kernel model is difficult.

The protocol developer does not have access to many of the tools commonly used with

user-space development or to the many libraries that make development faster through code

reuse. Also, any faults can result in the corruption of the operating system kernel and thus

bring down the entire system. In contrast user-level protocol development is much easier

because all of the tools normally available to application developers can be used and any

faults are isolated to the application process.

Another interesting possibility opened up by user-level networking is the ability to imple-

ment the network protocol stack in a high level language. Operating system kernels are
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typically implemented in C/C++. As part of the kernel the network protocol implemen-

tation must also use these languages. However, a user-level protocol implementation can

use whatever language or runtime environment is deemed appropriate. Imagine being able

to prototype a new transport layer protocol and application in Python or Java. This could

vastly reduce the time required for implementation even over a C/C++ user-level imple-

mentation.

2.4 User-level Networking for Ease of Maintenance

The maintenance and reliability aspects of user-level networking are very much related to

the ease of development. When using an in-kernel network stack applying bug fixes to the

protocol implementation requires booting the new kernel. This necessitates a complete re-

boot of the system. A user-level networking implementation on the other hand could simply

install the new protocol library and restart the affected applications. The new protocol im-

plementation will be linked against the application when it is restarted. This should result

in a much shorter downtime and also has the benefit of not affecting the other applications

running on the system.

2.5 Related User-level Networking Projects

There are a large number of user-level networking projects in the networking literature. This

section briefly introduces the work that is in some way similar or relevant to the network

stack design presented in this thesis. The goals for each of these projects are typically one

or more of the common user-level networking goals discussed in sections 2.1, 2.2, 2.3 and

2.4.

Thekkath, Nguyen, Moy and Laxowska (1993) [53] provide the earliest description of user-

level networking. This paper introduces most of the potential benefits that drive user-

level networking including: performance, ease of prototyping, debugging, maintenance,

co-existence of many different protocols and the ability to exploit application specific in-
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formation. A trend towards a larger number of transport protocols is noted by the authors.

It is interesting that this trend has not come to fruition as TCP and UDP are still by far the

most commonly used protocols.

Druschel, Peterson and Davie (1994) [5] describe a hardware based user-level networking

design. The hardware is the OSIRIS ATM network interface. Given the age of the design

the hardware details are not interesting in the context of this thesis. However, the work also

introduces the concept of application device channels (ADCs). ADCs provide applications

with restricted but direct access to the network interface hardware allowing the common

data path to bypass the operating system kernel. ADCs are implemented by mapping some

portion of the OSIRIS’s on-board memory into the virtual memory region of the process.

This mechanism allows the application to implement all protocols in user-space. On the

receive side the adapter is able to demultiplex directly to the correct receiving process by

using the VCI field of the ATM header. This design requires each connection to be assigned

a unique VCI value.

The U-Net system by Eicken, Basu, Buch and Vogels (1995) [8] is another example of a

hardware based user-level networking design. The main arguments used in favor of user-

level networking in this paper are performance and flexibility. Like OSIRIS, the first version

of U-Net uses fields in the ATM header to identify application instances. A later version

of U-Net [59] uses a modified version of Ethernet. The U-Net architecture gives each

application a virtual network interface. Protection of the network and other applications is

obtained by restricting control of connection setup and tear down to the kernel. This design

also has the benefit of bypassing the kernel during normal network communication.

The Arsenic Gigabit network interface developed by Pratt and Fraser (2001) [34] provides

a more modern hardware based platform for user-level protocol development. Arsenic pro-

vides applications with their own virtual network interface but unlike the OSIRIS and U-

Net systems Arsenic works with normal Ethernet and IP networks. This is accomplished by

adding features not normally found in Ethernet network interfaces. One of these features

is the ability demultiplex the received frames directly to the correct application without in-

volving the kernel. The operating system is responsible for providing the Arsenic network
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interface with packet filters which it executes to demultiplex packets. Arsenic also imple-

ments filtering on the send path to ensure applications do not send malformed or malicious

network traffic. Rate control is also implemented to stop applications from flooding the

network.

Alpine [9] is a user-level networking implementation which focuses on reducing the amount

of time required to develop network stack modifications. This goal is accomplished by

virtualizing all of the services the FreeBSD network stack normally expects from the rest

of the kernel infrastructure such as interrupts and timing information. The result is that the

same network stack implementation can be executed in either kernel-space or user-space.

This reduced the amount of time required to implement new protocols or add new features

to the FreeBSD network stack. Once the features have been tested in user-space the changes

are easily moved back into kernel if desired. In order to transmit complete packets Alpine

makes use of raw sockets. On the receive side Alpine installs Libpcap [28] packet filters so

that the user-space stack does not receive packets destined for the kernel network stack.

Braun, Diot, Hoglander and Roca (1995) [3] introduce a user-level networking implemen-

tation which separates the traditional in-kernel network stack into two parts and adds a new

socket type. This design splits the in-kernel TCP implementation into an in-kernel compo-

nent called TCPK which provides demultiplexing for incoming packets and TCPU which

is the user-level library. A new socket type is added to the kernel which allows for the

transfer of TCP segments to user-space. Since this design only allows for user-space imple-

mentation of TCP demultiplexing to the appropriate user-level stack is easily accomplished

through adding a small amount of logic to also look at the TCP port information.

Paris, Gulias and Valderruten (2005) introduce a user-level TCP/IP stack implemented Er-

lang [32]. Erlang is a functional programming language designed for building fault tolerant

distributed systems. An interesting aspect of this particular user-level stack is that the fea-

tures of Erlang are used to build a fault tolerant network stack. This network stack replicates

TCP state information on other nodes of the cluster in order to allow a connection to be re-

covered even in the presence of a node failure. The Erlang system uses a virtual machine

similar to the ones used by Java and the .Net platform. This alone makes the use of Erlang
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within a traditional operating system kernel impossible. In order to provide the user-level

network stack access to the network a raw socket is used. Packets are demultiplexed to the

correct network stack instance through the use of an unique Ethernet MAC address for each

network stack. This arrangement is fine for an experimental system but fails in a production

network because the use of raw sockets requires administrative privileges and each appli-

cation instance in effect changes the network topology. Nevertheless, this paper does show

a very innovative use of user-level networking.

In a paper that touches on many aspects of user-level networking Ganger, Engler, Kaashoek,

Briceno, Hunt and Pinckney (2002) introduce a user-level networking implementation based

on the Exokernel [14]. The Exokernel is a minimal operating system kernel whose only task

is to time share hardware resources. Each application process is provided low level access

to the hardware. The goal is to reach a high level of performance and flexibility by re-

moving the intermediate layer (kernel) from common operations. In order to demultiplex

packets to the correct application this design makes use of a packet filter engine called Dy-

namic Packet Filter (DPF) [10]. DPF uses dynamic code generation to construct efficient

packet filters. Applications request access to particular set of packets (eg TCP port 80) by

constructing the DPF filter and passing it to the kernel. It is up to the kernel to verify that

this new filter does not conflict with other installed filters. The design presented in this

paper is very interesting but it does require a specialized OS that is not used in production

networks. This work is also noteworthy because it is the first work to make the observation

that the application is the end of the network.

A recent example of user-level networking can be found in a presentation by Jacobson

and Felderman (2006) [22]. In this presentation the authors introduce a user-level network

stack with good performance characteristics. The design presented by the authors uses

asynchronous queues between the operating system kernel and the application to transmit

entire packets allowing all transport protocol processing to occur at user-level. Testing of

this prototype shows a 75% reduction in protocol processing overhead over the TCP im-

plementation found in the Linux kernel. This is especially impressive given the fact that

the Linux kernel is considered the fastest network stack available [22]. Communication

latency also shows improvement. This design introduces the idea of a transport signature to
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direct packets to the correct application but the workings of this transport signature are not

discussed. While the authors of this work explicitly state that this design is based on the

idea that the application is the end of the network the use of an in-kernel transport signa-

ture limits some aspects of end-to-end communication. Since the time of the presentation

(January 2006) no more details about this prototype have been made available.

The ability to provide network quality of service (QoS) features is one aspect of user-level

network stacks that is not mentioned often but is the goal of a few papers [60][16]. One of

the benefits of user-level networking for QoS is the reduction of hidden scheduling effects.

Operating systems have many high priority tasks which may interrupt processing at any

time. Also, the in-kernel network stack processes network data for all applications in the

system. Both of these aspects allow the traffic from one application to affect the latency

of network processing for other applications. By moving all protocol processing into a

single context the opportunities for scheduling is reduced potentially resulting in better QoS

performance. The ability to provide better QoS characteristics than the in-kernel network

stack is not a goal of this thesis but the possibility is mentioned for completeness.

2.6 User-level Networking and Memory Swapping

The in-kernel network stack model is by far the most common network stack design. Ac-

cording to [22] the fact that most operating systems use this design is an architectural prob-

lem created by historical accident. The first operating system to contain a network stack

was Multics in 1970. Multics ran on a GE-640 super-computer which was capable of 0.4

million instructions per second (MIPS). For comparison purposes a current Intel Core 2 Ex-

treme X6850 CPU is capable of 54,960 MIPS [27]. ARPAnet (the precursor to the Internet)

performance depended entirely on how fast Multics could empty its six IMP buffers. This

combined with the fact that it took up to two minutes to swap in a new user meant that the

network stack had to be placed in the kernel where it would not be swapped out of RAM.

Inspired by Multics the in-kernel network stack design was then used in Berkeley Unix and

became the standard network stack model.
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Given that the in-kernel network stack design was motivated by the requirement of avoiding

memory swapping one has to wonder what effects swapping will have on modern user-level

implementations. This is a topic which none of the user-level network work found in the

computing literature addresses. It is unclear if research in this area is simply being avoided

or if there is a consensus that modern computers have enough RAM and are fast enough

that this is no longer a problem. Interestingly, Jacobson describes a new user-level network

stack in the same presentation where the original motivation for the in-kernel network stack

is explained. Intuitively one might expect memory swapping on modern hardware to not

have a large impact on user-level networking for several reasons. Firstly, the entire pro-

cess will not have to be brought back into RAM to perform some small amount of protocol

processing. Only the memory pages relating to the network protocol implementation will

be required. Secondly, an application using the in-kernel network stack also has the poten-

tial to stop or slow network communication when it is swapped out of RAM because the

application may not execute fast enough to process the data in the receive socket buffers.

The operating system network stack can accept no more data when the application’s socket

buffers become full. The work in this thesis does not investigate the effects of memory

swapping on user-level protocol implementations.

2.7 Summary

User-level networking is a powerful network stack design technique which places network

protocol implementations within the application instead of the operating system kernel.

This design has many benefits in terms of performance, customizability, ease of develop-

ment and ease of maintenance. The concept of user-level networking and related works

have been introduced in this chapter because user-level networking is a very important part

of the IP per process network stack model presented in the next chapter.

This chapter also introduced user-level networking works found in the computing literature

which are in some way similar to the work presented in this thesis. These works range from

designs which are primarily hardware based to a complete network stack written in the
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Erlang functional programming language. Two works of special interest are [14] and [22]

both of which explicitly argue that applications are the ends of the network not operating

systems.
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Chapter 3

The IP Per Process Model

This thesis is not the first work to make the observation that applications are the ends of the

network. While other works have accepted this observation the network stack architectures

they present stop short of truly treating the application as the end of the network. This

thesis presents a network stack architecture which brings end-to-end connectivity and all of

its advantages to applications.

In IP networks, the ends of the network are identified by globally unique IP addresses. If

applications are indeed the ends of the network and not the operating system kernel, then

each application should be identified by an unique IP address. As long as intermediate

nodes, including the operating system kernel, forward packets sent to and from the applica-

tion in the same manor as any other IP router this model easily achieves all of the benefits

of end-to-end functionality for the application. This network stack model which transfers

complete IP packets to and from the application process and identifies each application by

an IP address is referred to as the IP per process model for the remainder of this thesis.

This chapter introduces the benefits that the IP per process model has over other other user-

level networking designs and the traditional in-kernel network stack design. In general

these benefits come from the architectural simplification created by treating applications as

the end of the network. Later sections discuss some consequences of the IP per process

model as well as possible designs for its implementation.



33

3.1 Advantages of the IP per Process Model

The single overwhelming advantage that the IP per process model has over the in-kernel

network stack and other user-level networking designs is that this model acknowledges the

idea that the application is the end of the network and extends the benefits of the end-to-end

principle to applications. All of the other advantages discussed in this section are the result

of this.

Chapter 2 introduced user-level networking and its many advantages. Since the IP per

process model relies to a large extent on user-level networking the advantages of user-

level networking also extend to the IP per process model. Where the IP per process model

really shines is in simplifying many of the problems that make other user-level networking

implementations overly complex.

3.1.1 Transport Layer Port Usage

Perhaps the largest source of extra complexity introduced by user-level networking is the

distribution and maintenance of state information among the individual stack instances. In

many cases the distribution of state information to the application is a very good thing.

For instance per connection TCP state is not in any way shared with the TCP flows from

other applications so following the end-to-end principle this data is best placed in the ap-

plication’s network stack. Unfortunately, there is some state information which must be

consistent between all user-level network stack instances which share a single IP address.

TCP and UDP identify the application which is sending and receiving packets by a source

and destination port number. The selection of the port number that the application uses

can be made by the application or a free port can provided by the network stack to the

application. If the application is initiating a connection it will usually allow the network

stack to choose the port number because there is no benefit to using a specific port. On

the other hand if the application is offering a service to other hosts the port used by the

application is very important. Offering SMTP service requires listening on port twenty-five,

HTTP requires listening on port eighty. These port assignments must be unique across all
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network stack instances which share an IP address. If two applications were both allowed

to listen on port twenty-five the kernel would have no way of deciding which application

should receive the packets.

The fact that transport layer port assignments must be unique poses a problem for most

user-level stack implementations. An individual user-level stack cannot simply choose a

port that it is not currently using because another network stack instance may be using

that particular port. Working around this problem requires the individual network stack

instances to negotiate port usage or the introduction of a intermediary process to arbitrate

port usage.

The Alpine project [9] virtualizes the FreeBSD network stack in order to allow protocol

development in user-space. To avoid conflicting transport layer port usage Alpine employs

a central server process. When an application using the Alpine network stack wants to use

a port it asks this central server. If the port is not in use then the server creates a dummy

socket with the in-kernel network stack to ensure that the in-kernel stack does not use this

port for an application which is not using the user-level stack.

The approach taken by [53] also uses a central server process called a registry server to

manage port usage but this server is given even more responsibilities. Instead of just ar-

bitrating port usage and leaving all protocol operations to the user-level network stack the

central server in this design is also responsible for connection establishment and tear-down.

For example to establish a TCP session the user-level stack asks the registry server to do

the TCP connection establishment. The registry server then provides the user-level stack

with a transmission channel.

A more decentralized port arbitration scheme is used by [14]. The scheme used by this

work is to have the application select the port number it requires or if no specific port is

required to randomly pick one. This particular user-level design requires the operating

system kernel to maintain packet filters which are used to direct packets to the appropriate

destination application. The kernel is also able to detect conflicts in these filters. If the

port requested by the application causes a conflict the kernel will refuse to install the packet

filter thus not allowing the reception of the potentially conflicting packets.
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The user-level network stack described in [32] side steps the port allocation problem by

requiring that every user-level stack is assigned its own unique MAC address. In effect each

user-level stack instance functions as a separate node on the attached Ethernet network. This

design requires access to a raw socket in order to capture all packets on the local network.

Another low level approach to the transport port allocation problem can be found in U-Net

[8]. U-Net relies on ATM VCIs to identify the packets destined for a particular application.

While this approach does avoid conflicting transport layer ports it simply moves the prob-

lem to a lower level. Instead of a transport layer port server U-Net has a server process to

establish these low level identifiers. The obvious deficiency of this approach is that it is not

applicable to the public Internet.

Although the port usage problem can be solved with a trusted server or an in-kernel service

as is evidenced by the preceding approaches this model does introduce some problems for

user-level network implementations. Firstly, the entity performing the port arbitration must

have some understanding of the transport layer network protocol in order to successfully

arbitrate port usage. This requirement makes it impossible for applications to deploy trans-

port layer protocols which the port arbitrator does not support. Secondly, all user-space

network stacks on a given system will be forced to negotiate port allocation using the same

method. While this is possible it may increase the difficulty associated with porting an

user-space network stack from one operating system to another.

All of the complexity associated with transport layer port usage comes directly from the

loss of end-to-end connectivity between applications. The fact that the transport layer port

space is shared state is not apparent when using the in-kernel stack but becomes a major

complicating factor once multiple network stacks are deployed.

The IP per process model of user-level networking neatly side steps all port allocation prob-

lems by bringing end-to-end functionality to the application. When each network stack in

the system has its own IP address there is no shared port state and thus no state synchroniza-

tion required between stack instances. This model allows the application’s network stack

to use any transport layer port it wishes and indeed any transport layer protocol it wishes

because each user-level stack instance is completely independent.
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An interesting side effect of the IP per process user-level networking model is the ability

to offer multiple instances of the same service on a single operating system instance. Nor-

mally an operating system can only host one SMTP service because only one process can

be listening on port twenty-five on a single IP address. However, when using the IP per pro-

cess model every application instance has the ability to be a SMTP server without causing

conflicts.

3.1.2 Demultiplexing

Closely related to the transport layer port allocation problem is packet demultiplexing.

Packet demultiplexing is the task of deciding which application or user-level network stack

instance should receive a particular packet. When using the traditional in-kernel network

stack design this process is relatively simple. For example when a packet is received by

the IP processing code it can look at the protocol identifier stored in the IP packet and de-

cide which transport layer input function to call. The transport layer input function can

then process the packet and decide which application socket should receive the data. When

user-level networking stacks are introduced things become slightly more complex. It is no

longer possible for the IP layer to identify the next step in the protocol processing from

the transport layer protocol identifier alone. Instead, the data within the transport layer

header must be inspected. There are two possible solutions for demultiplexing packets to

the correct application: transport layer specific demultiplexing and general packet filters.

Transport layer specific demultiplexing is the simplest of the two options but comes at the

cost of flexibility. For example the user-level network stack in [3] only allows for user-

space implementation of TCP. This design is not a general user-level network architecture.

As a result demultiplexing to the user-level stack simply consists of first comparing against

a list of TCP ports used by user-level stack instances and if none are found the packet is

passed to the in-kernel network stack for further processing. Transport layer specific de-

multiplexing has the disadvantage of limiting user-level stacks to using only those transport

layer protocols for which the operating system kernel contains filtering features.

Another approach to packet demultiplexing is to use a more general packet filtering mech-
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anism. General packet demultiplexing is a complex topic to which Network Algorithmics

[56] dedicates an entire chapter. The discussed packet demultiplexing approaches include:

the Berkley packet filter (BPF) [29], Pathfinder [2] and Dynamic Packet Filter (DPF) [10].

BPF was designed to be a high speed mechanism for selecting which packets to capture for

use in network monitoring tools such as tcpdump. Pathfinder fills a role similar to BPF but

it is designed to support a much higher number of filters and with greater performance. In

order to accomplish this Pathfinder creates a trie where each node in the trie is a comparison

to be made against the packet being processed. Finding a match using Pathfinder consists

of finding the longest matching path in the trie. Finally, DPF is a compiler based approach

to packet demultiplexing. Dynamic code generation is used to create what is basically an

optimized version of the pathfinder trie for any given filter set. While DPF is much faster

than Pathfinder, dynamic code generation adds complexity to the implementation.

The Alpine project [9] accomplishes packet demultiplexing through the combination of a

packet capture library and firewall rules. The packet capture library Libpcap [28] is used in

combination with a raw socket to obtain a copy of all packets on the network link. Since

Libpcap captures packets but does not stop further processing firewall rules are also in-

stalled by the central port server to stop the in-kernel network stack from receiving packets

destined for a user-level stack instance. Other approaches the packet demultiplexing in-

clude [53] which requires either hardware support for packet demultiplexing or the use of

BPF in the kernel and [14] which makes use of DPF. Also interesting is the Arsenic network

interface hardware presented in [34] which performs packet demultiplexing on the network

interface itself.

Another possible method to demultiplex packets is to simply demultiplex at a lower layer

and completely ignore the transport layer information. Examples of this method can be

found in [8, 59]. These user-level network designs use information in the ATM header or a

modified Ethernet header to choose the destination application. These approaches require

that these identifiers be negotiated between the two hosts on a per connection basis and thus

do not generalize to functioning on the public Internet.

The lowest layer which is common across the entire Internet is the network layer, specifi-
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Figure 3.1: IP Fragmentation

cally the IP protocol. This makes the IP address the lowest layer on which demultiplexing

can occur on the Internet. By demultiplexing at the IP layer the IP per process model re-

duces application demultiplexing to IP routing. IP routing is a simple and scalable operation

that does not have the complexities of general purpose filters or the limitations of transport

layer specific filtering.

Another factor which complicates packet demultiplexing is IP fragmentation [6]. IP packets

moving through the network may cross many different layer one and layer two networking

technologies. These technologies may have different limitations on the maximum size of

a data packet. This maximum packet size is typically referred to as the maximum trans-

mission unit (MTU). If an IP packet arrives at a router and it is larger than the outgoing

interface’s MTU the IP packet will be broken into two or more smaller IP packets called

fragments. Each of these fragments contains some portion of the original packet’s data

payload. The fragments will be sized to allow their transmission on the outgoing interface.

This allows the data to continue towards its destination.

Each individual IP fragment has the information necessary for IP routers to forward it to-

wards its destination. Fragments that have reached the destination must be buffered until

all other fragments have been received and the original IP packet can be reconstructed or

some predefined time expires and the fragments can be discarded. This buffering is nec-

essary because one or more of the IP fragments may be lost in the network. Although the

IP protocol does not offer reliable packet delivery it does assure that the packets which do

arrive are intact. If a network stack were to pass only partially reconstructed IP packets

to the transport layer arbitrary portions of the packet could be missing. The application

would have no way to know which portions were missing and any length information in the
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transport layer header or application data would be meaningless.

The in-kernel network stack and most user-level network stack designs perform transport

layer demultiplexing within the kernel. This forces IP fragment reassembly to also occur

at this point because transport layer demultiplexing cannot be completed until the complete

IP packet has been received. The reason for this is that only the first fragment contains

the transport protocol header (see figure 3.1). All in-kernel network stacks implement IP

fragmentation within the kernel so it is also possible for user-level networking designs to do

the same. However, IP fragment reassembly is a relatively complex task with a history of

bugs in multiple implementations [57, 58, 61]. The IP per process model has the advantage

of moving IP fragment reassembly into the application along with the transport protocol

implementations. This allows the kernel to forward IP packets to the application without

any concern for whether or not each packet is a fragment just as every other IP router

on the Internet does. This simplifies the kernel and thereby reduces the possibility for

kernel implementation bugs. IP reassembly bugs found in user-level implementations will

be much easier to fix for all the same reasons protocol development is easier in user-space.

Another advantage of user-level IP fragment reassembly is that the fragments waiting to be

reassembled are stored in the application’s virtual memory space. An application’s virtual

memory space is very large and can be swapped to disk when the system requires free

RAM. This avoids using kernel memory for fragment reassembly which some operating

systems cannot swap to out of RAM.

3.1.3 Error Message Demultiplexing

Error message demultiplexing is a special case of demultiplexing with its own set of dif-

ficulties for user-level protocol implementations [14]. Consider an application attempting

to initiate a connection with a remote host. Hopefully the connection will be successful

and the destination will reply. Of course there are also many errors which are possible.

For example the destination host could be behind a firewall or be offline. In both of these

cases an intermediate node in the network path may send an error packet to the source node

informing it of the problem.
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Figure 3.2: ICMP Unreachable Packet

IP networks signal errors using the Internet control message protocol (ICMP) [35]. In the

case of the destination node being offline the message received by the source host could

be an ICMP destination unreachable message. See figure 3.2 for the layout of this type

of ICMP message. Notice that unlike the packet that elicited this response the transport

layer header does not immediately follow the IP header in the response packet. This poses

problems for demultiplexing the error back to the user-level network stack that originally

sent the packet. A general purpose filter installed to match the packets destined for the

user-level stack will not match these error packets. This forces either an extension of the

transport layer specific filter rule to also match ICMP messages relating to the user-level

packet flow or a second general purpose filter to match these errors. In either case the work

of the intermediary, often the operating system kernel, increases. Here again the end-to-end

nature of the IP per process model pays off. Handling these errors when using the IP per

process model requires no special features in the kernel beyond simple IP routing which is

already necessary for network communication.

3.1.4 Network and Application Protection

User-level networking gives applications new capabilities beyond what is available to them

using the sockets API. These new capabilities come from the ability to have much more

control over the packets which are transmitted into the network. However, with more power

comes greater potential to harm applications on the system and the attached network.

When using the in-kernel network stack design applications receive data only after the

protocol processing is complete. This ensures that an application only receives network

data that was destined for it. User-level implementations which rely on raw sockets to get
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packets to the application do not offer the same guarantee. Raw sockets give an application

a copy of every packet received on a particular interface allowing a single process to snoop

traffic from every application. User-level implementations which use raw sockets include

[9, 32]. User-level network designs which perform demultiplexing within the kernel or on

the network interface do not suffer from this problem. Using the IP per process model all

demultiplexing occurs within the kernel and is based on the destination IP address so this

model is also not vulnerable to inter-application snooping.

The ability to construct and transmit whole packets is what gives user-level networking

flexibility but this capability can be used maliciously. The most obvious way to abuse this

capability would be for one application to spoof another’s traffic. For example a process

could impersonate a local SMTP daemon by transmitting packets with a TCP source port

of twenty-five. One possible solution to this problem is the use of outbound filters. This

is basically the inverse of demultiplexing. Before transmitting a packet the kernel or some

other trusted intermediary would verify that the packet to be transmitted matches a filter.

If the packet does not match the filter it is dropped. The approach taken in [53] is to have

a central port server be responsible for installing these filters. This adds further protocol

specialization to the central port server making it even more difficult to deploy new transport

protocols. A somewhat more extreme view can be found in [14] which argues that it is not

necessary to stop processes from transmitting arbitrary packets because any security relying

on a such a design is faulty anyway. Just as the IP per process model greatly simplifies

demultiplexing it also greatly simplifies outbound packet filtering. It is very easy to filter

outbound packets based solely on the source IP address. If this simple comparison fails the

packet can be discarded preventing source spoofing.

Another potential problem with user-level networking is the rate at which an application

may send packets into the network. When using the in-kernel TCP implementation the

application is only able to transmit data at the rate TCP will accept. This rate will depend

on the bandwidth available and packet loss. Obviously an application with its own network

stack could transmit data at any rate it wishes potentially causing congestion on the network.

However, an application could also flood the network with UDP packets even when using

the in-kernel network stack so this problem is not limited to user-level networking. Also,
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it is very difficult to limit a single application’s network bandwidth when using the in-

kernel network stack model. In order to accomplish such a limitation all TCP and UDP

packets from the application must be classified into a single group to which the bandwidth

limitation can be applied. This classification requires knowledge of exactly which ports are

being used by the application and denying the use of other ports. Since the IP per process

model associates each application with a single unique token in the network traffic, the

source IP address, it is much easier to establish per process bandwidth limits using this

model.

3.1.5 Protocol Implementation Portability

Section 1.3 discusses the portability problems inherit in the in-kernel network stack model.

The main difficulty is the fact that any protocol implementation developed for a particular

operating system kernel will not be easily ported to another operating system because there

are no standard interfaces or architectures that would make this task easier.

User-level networking can greatly increase the portability of network protocol implementa-

tions in the same way that GUI tool-kits are often portable across multiple windowing sys-

tems. This is usually accomplished through similar low level interfaces which the library

can hide from the application developer. There are only two points of contact between the

operating system kernel and an user-level network stack: the packet exchange interface and

any interface needed to communicate transport layer port usage and demultiplexing infor-

mation. Porting network protocol implementations across simple interfaces such as these is

a much easier task than porting between operating system kernels. Since user-level network

stacks using the IP per process model do not need to communicate layer four information

to the kernel or to other user-level network stack instances the task of porting between op-

erating system kernels will be even easier than in other user-level networking designs. In

this case it is only the packet exchange interface that may differ between operating systems.
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3.1.6 Kernel Simplification

Not only does the IP per process model simplify the application and the associated user-

level network stack it simplifies the operating system kernel as well. In the extreme case

where all applications running on a particular operating system instance make use of the IP

per process model the kernel’s networking features can be reduced to IP routing. That is, all

transport layer protocols and associated code such as the socket implementation could be

removed. This would greatly decrease the complexity of the networking code in the kernel.

Of course it is not likely that any OS will be able to remove its in-kernel network stack

any time soon given the large number of applications developed for this model. Even if the

in-kernel stack is not removed the IP per process model offers advantages over other user-

level networking designs. Any user-level networking design that makes use of the same

network identifier (IP address) for both the in-kernel network stack and user-level stack

instances will require modification and added complexity to the in-kernel stack. These

problems which are associated with layer four state information and demultiplexing were

discussed earlier in sections 3.1.1 and 3.1.2. As will be seen in chapter 4 where the pro-

totype IP per process implementation is introduced in detail, the IP per process model can

be implemented in such a way that no part of the existing in-kernel network stack requires

modification.

3.1.7 Summary of Advantages

In general the benefits associated with the IP per process network stack model come from a

reduction in complexity. This reduction in complexity is accomplished through following

the end-to-end principle by moving as much work as possible to the end of the network,

the application. There are many positive results that come from this change. Most obvi-

ously, the application receives end-to-end connectivity and all of the associated benefits.

The operating system kernel becomes simpler because the only IP networking feature re-

quired is IP routing. The implementation of the user-level stack becomes easier because the

IP per process model removes the need for shared state between user-level network stack

instances. The interface between the application and the operating system also becomes
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simpler because the only required operations are sending and receiving complete IP pack-

ets. This simple interface may also aid in making user-level networking implementations

more portable between operating system kernels.

3.2 Discussion

The IP per process model has many advantages over both the in-kernel network stack ar-

chitecture and other user-level network stack designs. Of course any architectural change

of this magnitude is going to have consequences and downsides. This section investigates

some possible criticisms and problems associated with the IP per process model.

3.2.1 IP Address Consumption

The most obvious criticism of the IP per process model is the increased consumption of

IP addresses. Given the present situation where most Internet end users are only assigned

a single IP address it is obvious that these users cannot deploy applications using the IP

per process model without introducing NAT into the network. While introducing NAT will

work if the transport protocol is supported by the NAT device it destroys the end-to-end

benefits of the IP per process model. Although end users may not be able to deploy the IP

per process model on the current Internet there are other situations where it can be deployed.

Unlike Internet end users, Internet Service Providers (ISPs) are allocated much larger blocks

of IP addresses. Given a compelling application requiring the IP per process model or cus-

tomer demand it is very unlikely that an ISP would not have IP address space available

to allocate a small subnet for this purpose. Another interesting application of the IP per

process model may come from private networks. Most of the high performance computing

today is executed not on a single computer but a cluster of computers [54]. Given the lack

of available global IP address space these clusters are typically allocated IP addresses from

non-globally unique IP space [40] such as 192.168.0.0/16 or 10.0.0.0/8. When building a

network with private, non-global IP addresses the available address space is effectively un-

limited. The 10.0.0.0/8 block for instance contains 224 addresses available for internal use.
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Given the specialized nature of these clusters and the distributed computation performed

there may be benefits to using custom network stacks and specialized transport protocols

which could be easily deployed using the IP per process model.

While the present Internet architecture may not have enough addresses to allow every end

user to make use of the IP per process model future architectures might. IPv6 was designed

to be the successor to the present IP protocol which is now often referred to as IPv4. The

primary advantage of IPv6 is a much larger address space. IPv4 offers users a thirty-two

bit address space for a total of 232 available addresses. IPv6 offers a one hundred and

twenty eight bit address space for a total of 2128 addresses. This is 296 times the number

of addresses available in IPv4. The recommended deployment model for IPv6 places 264

addresses on every local area network (LAN) [19]. This may seem like a waste of ad-

dresses but it allows nodes to automatically configure themselves with unique IP addresses

removing the need for DHCP on IPv6 LANs. Even more interesting is the fact that the

recommended IPv6 deployment model will give 280 addresses to every end-site. Assuming

ISPs follow this model when deploying IPv6, every user on the Internet will have ample

address space to deploy the IP per process model.

3.2.2 Proliferation of Layer Four Protocols

The IP per process model brings end-to-end functionality to applications allowing for the

deployment of any transport layer protocol or network stack design. Two potential prob-

lems that arise with these capabilities are protocol identifier exhaustion and protocols with

congestion control behavior that is incompatible with TCP.

The IPv4 and IPv6 headers contain fields called the protocol identifier and next header

respectively. These fields identify the protocol that is layered immediately on top of IP for

the packet. For instance TCP is given the value of six and UDP packets are identified with

a protocol number of seventeen. Without this identifier the receiving network stack has no

way to decide which transport protocol should be used to continue processing. In both IPv4

and IPv6 these fields are defined to be a single byte wide. As a result only two hundred and

fifty-six unique protocols can be identified. With present network stack architectures and
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the associated difficulty of developing and deploying new transport protocols this relatively

small protocol identifier field appears to be large enough as only one hundred and forty-one

of the available protocol identifiers have been allocated [38]. However, the IP per process

model makes it dramatically easier to develop and deploy new transport protocols. This

could lead to exhaustion of the protocol identifier space. One potential solution to this

problem may be to create a new protocol which simply adds a single field that is used to

create a larger protocol identifier space. One of the remaining free identifiers could be

used to indicate this new protocol. Another possible solution may be to make use of the IP

protocol header options to create a larger protocol identifier field.

The second problem associated with an increase in the number of transport protocols be-

ing used on the Internet is the behavior of these protocols with respect to congestion. The

congestion algorithm used in TCP attempts to be fair to other connections sharing the same

network path. If congestion is detected, usually through a lost packet, TCP will back off

its sending rate in an attempt to reduce the congestion. When every flow on the network

implements similar behavior each connection gets a fair amount of bandwidth. With the

ability to easily deploy new protocols the likelihood of a protocol without TCP compatible

congestion control increases. This behavior could be malicious or simply an implementa-

tion bug. While this threat to the stability of the Internet should not be taken lightly any

application with access to the UDP protocol already has a mechanism for generating traffic

without TCP compatible congestion control so the threat is not unique to the IP per process

model.

3.2.3 TCP Time Wait State and Quiet Time

A single TCP connection is uniquely identified by the combination of four pieces of infor-

mation, a four tuple. These four pieces of information are the local IP address, the local

port, the remote IP address and the remote port. TCP implementations use this information

to demultiplex packets to the appropriate receiving process. Within a TCP byte stream in-

dividual bytes are associated with a thirty-two bit sequence number. This sequence number

is used to reconstruct the order of the bytes in the case of lost or reordered packet delivery.
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Two applications on the same system cannot use the same four-tuple at one time because

there would be no way to uniquely demultiplex the packets. Also, there is a time period

after one application closes a connection during which another application should not be

allowed to use the same four-tuple. The reason for this is that IP networks do not guarantee

delivery of packets in order or otherwise so it is possible for a single packet to be delayed

significantly behind other packets in the stream if the packet takes a longer path to the

destination. Fortunately, there is some bound on this delay because each router which

forwards an IP packet is required to decrement the time to live (TTL) counter by one.

When this counter reaches zero the packet is discarded. However, the possibility for a long

delay does exist. A problem occurs when one application closes a TCP connection and

another application uses a TCP connection based on the same four tuple shortly later. If a

packet from the previous TCP connection is delayed but still arrives at the destination host

there is no way for the receiving TCP to know that this packet contains data from a previous

connection. If the TCP sequence numbers of the bytes in this delayed packet are close to

the current position in the new connection then completely unrelated data may be passed to

the receiving application.

The TCP protocol’s solution to this problem is the time wait state and quiet time. The time

wait state is the final state a TCP connection enters when the local application initiates the

closing of the connection. During this state the connection has been shutdown but the state

information for this connection remains active for a set length of time. This stops another

TCP connection with the same four-tuple from being created. The wait time is defined

to be two times the maximum segment lifetime (MSL). The MSL is an implementation

defined value that ranges from thirty seconds to two minutes [48]. The time wait state

covers the situation when an application cleanly closes a connection. By maintaining the

state information for the 2*MSL period the TCP implementation can be sure that no stale

packets matching a new connection will be received. However, the time time wait state does

not help if the operating system crashes or if the system suffers a power loss. In these cases

there is no state information indicating which connections may receive stale packets. Thus

there is no way for the newly booted TCP implementation to avoid using these connections

during the MSL period. In order to deal with this problem TCP has the idea of a quiet
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time. The quiet time is defined to be MSL seconds long. During the quiet time the newly

initialized TCP implementation should not create any new connections to ensure that all

packets in the network have expired. However, many operating systems do not implement

the TCP quiet time because most hosts take longer than MSL seconds to reboot [49].

The need to maintain state information about recently closed connections poses a problem

for user-level TCP implementations. If all connection state is maintained in the application,

the application cannot exit until the time wait state is complete. Three possible solutions to

this problem are outlined in [14]. The first is to simply require the application process to

not exit until the time wait state is complete. This solution poses problems for interactive

applications such as command shells because the wait time destroys interactivity. The sec-

ond solution is to extend the OS to allow the user process to signal that it is complete and

have the OS remove the process from the process list even though the process continues to

exist until the time wait state is complete. The third solution offered is to pass the owner-

ship of the connection to a trusted process when the application exits. Another interesting

solution to this problem can be found in [53]. This user-level implementation makes use

of a special process referred to as a registry server to open and close all connections. The

application is simply given a handle to the connection when it is opened and responsibility

for the connection falls back to the registry server when the application exists.

Using the IP per process model, an application restart becomes very similar to a complete

system restart from the standpoint of the network stack because a new, completely indepen-

dent network stack instance is created. This makes the problems associated with packets

from old connections more important because of the speed at which applications can be

restarted. One way to deal with this problem would be to have the user-level network

stack save state information when the application shuts down. This would allow the newly

started user-level stack instance to avoid reusing the same connections. While this solution

will work for a clean application shutdown it does not help when the application ends unex-

pectedly. In this situation the new user-level stack instance will either have to wait the quiet

time before transmitting TCP packets or simply ignore the possibility of receiving segments

from old connections like many operating systems do. An interesting way to sidestep the

problem of receiving old packets which is made possible by the IP per process model is to
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simply use another IP address. Of course this is not always possible because some services

will be required to listen on a predefined address.

3.2.4 Connection Passing

The desire to share network connections across process boundaries also creates problems

for user-level networking. A common use of this technique is to have a single process

listening for incoming connections. When a connection has been established the listening

process creates a child process to handle the new connection. This allows the original pro-

cess to continue listening for more connections. On Unix based systems the child process

is created by forking the listening process. This operation gives both the original process

and the new process a copy of the file descriptor referencing the new connection. The orig-

inal process closes this file descriptor and the child process uses it to communicate with

the remote device. There are also other methods which enable socket file descriptors to be

passed between processes which do not require the parent child process relationship.

Some user-level implementations go to great lengths to support connection passing. In [53]

connection sharing is accomplished by making use of the Mach ports mechanism which is

a feature of the underlying operating system. The user-level implementation in [14] accom-

plishes passing connections between processes by mapping the connection information into

the new process and unmapping it from the original process.

The completely independent nature of network stacks using the IP per process model makes

connection passing difficult. The problem is that all packets for a particular destination

IP address are delivered to a single application process. One way to support connection

passing would be for the receiving process to simply transfer the received packets to another

process through some inter-process communication method. Given the context switches

and data copies involved the performance of this option may be poor. Another possibility

would be to give the kernel the ability to splice certain traffic off to another process. This

solution adds significant complexity to the kernel’s demultiplexing and breaks the end-to-

end nature of the IP per process design.
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It is important to note that the IP per process model does not preclude the use of multi-

threaded applications. For example, instead of forking a new process to handle a client

connection a new thread could be created instead.

3.3 Designing the IP Per Process Model

In order to achieve end-to-end connectivity for applications the IP per process model strives

to push as much work as possible into the application process. This includes making use of

user-level networking to place the protocol implementations within the application instead

of the operating system kernel. This arrangement adds the requirement for an interface

which allows the application to transmit and receive complete IP packets.

There are many possible ways that the IP per process model can be implemented within

the host operating system kernel. Perhaps the simplest is to make use of raw sockets to

capture all network traffic and pass it to the user-level network stack. Raw sockets allow

applications to receive a copy of all packets sent to a particular network interface and to

transmit packets of their own construction. The advantage of implementing the IP per pro-

cess model with raw sockets is that no changes are required to the operating system kernel.

However, there are several problems with this approach. One problem is that every process

reading from a raw socket receives all packets on the network. This makes it trivially easy

for one application to spy on another. Raw sockets also allow the application to transmit

any network packet it wishes thereby allowing one user-level stack to spoof another user-

level stack’s address or even the in-kernel stack’s address. These problems combined with

the fact that the use of raw sockets usually requires special privileges for the application

makes raw sockets a poor choice for the implementation of the IP per process model.

Another possible design for the implementation of the IP per process model involves adding

an unique IP address for each application to one of the kernel’s existing network interfaces.

The advantage of this design over using raw sockets is that the kernel is in a position to

limit which packets each application receives and also limit the packets that the application

can send. This provides for the protection of the network and other applications from a ma-
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licious application. One disadvantage of this design is that it requires modification of the

kernel’s packet demultiplexing to pass received packets directly to the application instead

of passing them to the in-kernel protocol implementations. The management of application

IP addresses on the existing network interface also poses problems for this design because

adding and removing IP addresses from a network interface usually requires administrator

privileges. Possible solutions to this problem include preassigning a set of IP addresses to

the interface or introducing a trusted server process to manage interface addresses. The lack

of globally unique IP addresses also creates difficulties for this design because each appli-

cation uses an IP address from the local LAN subnet. Due to the shortage of IPv4 addresses

most LANs are not assigned a subnet with a large number of addresses beyond the number

of nodes on the LAN. The small number of free addresses limits the number of applications

which can utilize the IP per process model. Of course the LAN could be assigned a larger

subnet but it may be hard to predict exactly how many applications will require IP addresses

and running out of IP addresses could result in a new physical node being unable to join the

network. This will become far less of a problem on IPv6 networks. As mentioned in section

3.2.1 the recommended deployment model for IPv6 places 264 addresses on every LAN. In

this situation it is very reasonable to allow each application to utilize an IP address from

the local LAN without any realistic fear of running out of addresses. The technology to dy-

namically create an unique IPv6 LAN address has been defined in [31]. This technique was

developed to address the privacy concerns associated with using the 48-bit Ethernet MAC

address to create a node’s local IPv6 address. While assigning the application’s IP address

to a local interface does have advantages over using raw sockets the difficulties associated

with interface permissions, modification of the existing network stack and the shortage of

IPv4 addresses makes this design problematic.

A third design for an implementation of the IP per process model involves treating the

operating system kernel as nothing but another IP router in the network. This version of the

IP per process model consists of two parts: a kernel to user-space link layer and user-level

protocol implementations. The purpose of the kernel to user-space link layer is to create a

process area network (PAN) which is analogous to a local area network (LAN) but which

consists of application processes instead of computers. A LAN which is connected to the
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Figure 3.3: The PAN Based IP Per Process Model

Internet typically has a single device, the gateway, which connects it to the Internet. Often

this gateway device will also be responsible for providing IP addresses to the individual

computers on the LAN. In the IP per process model the kernel takes on both of these roles.

The PAN is allocated a subnet just as a LAN is. Each application using the PAN IP per

process model is assigned an IP address from this subnet and the kernel routes packets

to and from the appropriate application process. The primary advantage of the PAN IP per

process design is its conceptual simplicity. By extending the Internet into the host computer

the PAN design follows the same principles as normal inter-computer IP networking. See

figure 3.3 for a pictorial representation of the PAN IP per process model.

A PAN based IP per process implementation is conceptually very simple because it fol-

lows the same routing logic used throughout the rest of the network. However, there is one

downside. Since this design relies on a separate subnet for the PAN it does require addi-

tional routing configuration in the network. Without a route entry the LAN gateway will

not know how to reach the PAN. Fortunately routing protocols such as Open Shortest Path

First (OSPF) and Routing Information Protocol (RIP) have been designed to dynamically

manage route distribution but this is an added complexity not found in other network stack

architectures.

It is worth emphasizing that the PAN based IP per process design is a routing based design.

The IP packets contained in the layer two frames received by the system’s network inter-

faces are removed from the frame and then passed to the application. The layer two headers
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are not passed to the application. This behavior is identical to how an IP router moves

packets between layer two networks. As a result, the PAN based IP per process design does

not require each application to have its own layer two network address and it does not add

any extra complexity to the attached layer two network.

As with any complex software system there are a multitude of designs that could be used

to implement the IP per process model. The designs discussed here provide an overview of

the possibilities and are by no means an exhaustive list.

The IP per process implementation presented in the next chapter follows the PAN design.

This design was chosen because of its conceptual simplicity and the fact that it takes advan-

tage of the routing infrastructure already found in the Linux kernel. In fact the prototype

described in this thesis did not require any modification of the existing Linux network stack.

3.4 Summary

The IP per process model fully acknowledges the idea that the application is the end of

the network by assigning each application an unique IP address. This allows all protocol

processing from the network layer to the application layer to occur within the application

process thereby establishing end-to-end connectivity for the application. A key component

of the IP per process model is user-level networking. Other user-level networking designs

are burdened by the complexities associated with sharing the network end point identifier,

the IP address, between multiple user-level network stacks. The IP per process model

greatly simplifies user-level networking by avoiding these problems.
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Chapter 4

Prototype Implementation

The implementation of the IP per process model described in this chapter is based around

the PAN model discussed in section 3.3. There are two components of this implementation.

Pnet is a Linux kernel module which provides the PAN and associated interfaces to appli-

cations. The user-level networking library (UNL) is an user-space implementation of the

IP, ICMP, UDP and TCP protocols for use with Pnet.

Figure 4.1 presents a high level and simplified picture of the Pnet/UNL design. The details

of this prototype are discussed in subsequent sections. At a high level, Pnet provides UNL

with ability to receive and transmit whole IP packets. Pnet accomplishes this by presenting

itself as a network interface to the Linux kernel and offering a character device interface for

interaction with applications. UNL makes use of the character device interface provided by

Pnet in order to perform all network protocol processing at user-level.

Figure 4.1: High Level Overview of the Pnet/UNL Prototype
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4.1 Pnet

Pnet [46] is a Linux kernel module which provides the process area network (PAN) interface

to applications. The Linux kernel uses a monolithic kernel architecture. Monolithic kernels

execute all components of the kernel in the same address space without protection barriers

between components. This does not require a single thread of execution. In fact, current

Linux kernels employ many separate kernel threads. Traditionally monolithic kernels are

contained in a single binary image. As a result, the size of the kernel image grows as new

hardware devices are supported or new features are added. Linux avoids this problem by

providing loadable kernel modules. Linux kernel modules are somewhat similar to user-

space shared libraries in that they are loaded at runtime. This allows the main kernel image

to remain small as new features and device support is added. For example, many Linux

distributions ship most hardware drivers compiled as modules so that only the required

modules are loaded for each particular computer system. The kernel module facility can

also be taken advantage of to build and deploy kernel components which do not have to be

compiled with the rest of the kernel. Pnet is designed as a kernel module specifically to

make it easier for users to deploy the IP per process model by avoiding re-compiling the

entire kernel and rebooting to start the new kernel.

4.1.1 Implementation

There are two main tasks required of Pnet in order to implement the PAN IP per process

model. On one side Pnet must interact with the kernel network subsystem to pass IP packets

to and from the attached network. On the other side Pnet must provide an interface to

applications using the IP per process model which enables these applications to send and

receive complete IP packets.

Within the Linux kernel all network interfaces are represented by a common abstraction,

the net_device structure. This large structure contains many fields including device identi-

fication, network packet queues and function pointers for each operation a network device

may wish to support. Device driver authors simply implement these functions and provide
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the kernel with a net_device instance with the appropriate function pointers set. This al-

lows the network subsystem within the kernel to be completely device independent. Pnet

takes advantage of the device independent nature of the kernel by encapsulating the net-

working portion of its functionality within a net_device abstraction. As far as the kernel is

concerned Pnet is another network device attached to the system just as a second or third

Ethernet interface would be. The use of the net_device abstraction allows all of the standard

networking tools to be used without modification. For example, configuring the IP address

and netmask assigned to Pnet can be accomplished using the traditional Unix ifconfig pro-

gram. It is also possible to attach a network sniffer such as tcpdump or Wireshark to the

Pnet interface to monitor all application packets because this functionality is common to all

devices using the net_device abstraction. The most important advantage of implementing

Pnet using the net_device abstraction is that the kernel is able to route packets to this in-

terface without modification to the kernel’s routing infrastructure. Other advantages of this

design include the ability to utilize Linux’s powerful firewall and network quality of service

features. Possible uses for these features are discussed in later sections.

While the net_device abstraction is a convenient way to implement the network facing

side of Pnet it is not useful for the application interface. Most non-network devices on

a Unix based operating system are characterized as one of two types, character devices or

block devices. Block devices typically include storage media such as hard disks and flash

memory. These devices operate on multibyte units of data called blocks. Since the size

of network packets and their arrival time is unpredictable the block device abstraction is

not useful to Pnet. Character devices on the other hand operate on a character by character

basis. Keyboards, serial ports and normal files use a character based interface. The basic

requirement for the application interface to Pnet is the ability to transmit whole IP packets to

the net_device portion of Pnet. Pnet implements this interface through the use of a character

device and shared memory.

Character devices function much like a regular file or socket and many of the same oper-

ations apply. When the Pnet kernel module is loaded it creates a character device located

at /dev/pnet. The application making use of the IP per process model accesses Pnet by

opening /dev/pnet with the open function call just as it would any other file. Once opened,
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ioctl operation Description
PNET_IOMTUGET Used by the application to get the MTU size.

PNET_IOBUFSIZEGET Used by the application to get the size of each packet buffer.
This must be greater than or equal to the size of the MTU.

PNET_IOBUFNUMGET Used by the application to get the number of packet buffers.
PNET_IOIPSET Used by the application to set the IP address this application

instance is using.

Table 4.1: Pnet ioctl Commands

Figure 4.2: struct pnet_msg

the application is able to read and write to the returned file descriptor with the normal read

and write system calls. As with many other character devices the Pnet character device

supports several special ioctl operations. The ioctl system call is a mechanism for allowing

communication with the character device which does not rely on the primary read/write

communication channel. For example serial ports use the ioctl system call to set the parity

and data speed. The Pnet character device supports the four ioctl operations described in

table 4.1.

The ioctl system call is used by the application process to get and set configuration pa-

rameters but it is not used for the packet data transfer. Instead an application receives and

transmits network packets by simply reading or writing a small data structure to the Pnet

character device. The definition of this structure in C can be found in figure 4.2.

The pnet_msg structure is small and simple. It consists of four sixteen bit fields for a total

of sixty-four bits or eight bytes. Obviously the pnet_msg structure is not large enough

to transmit an entire network packet. The reason for this is that the pnet_msg structure is

used for communicating information between the application and Pnet not the actual packet

transfer. The meaning of each field of the pnet_msg structure can be found in table 4.2.

The final portion of Pnet’s interface to the application is the packet buffers. The packet

buffers used by Pnet are implemented using a memory region which is shared between the
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Field Description
type The type of this message. See table 4.3.
num The buffer number this message refers to.
len The length of the data in the buffer this message refers to.

Not always required.
pad Unused. Fills structure to 64 bits.

Table 4.2: struct pnet_msg fields

Type Description
PNET_MSG_DATA_BUF This message type indicates that the associated buffer

contains a network packet.
PNET_MSG_FREE_BUF This message type tells Pnet that the associated buffer is not

being used by the application.
PNET_MSG_NEED_FREE_BUF This message type is used by the application to inform Pnet

that it requires buffers to transmit packets.

Table 4.3: Possible Values for the Type Field of pnet_msg

kernel and the application process. Shared memory allows both the kernel and the applica-

tion to create a packet in place and pass a reference to that packet rather than copying the

entire packet to a new buffer for each send and receive. This has performance advantages

because data copying is a very large portion of the overhead found in most network protocol

implementations [12]. The shared memory region is divided into packet buffers which are

each 2048 bytes long. This size was chosen for two reasons. Firstly 2048 bytes is large

enough to contain a full Ethernet frame which has a maximum size of 1518 bytes. The

second reason is that there are constraints on how memory is allocated within the kernel.

Allocating a memory region which is an even multiple of the hardware page size simplifies

the internal design of Pnet. The target architecture for Pnet is i686 which uses a 4096 byte

page size. This makes 2048 bytes a good choice for the buffer size because two buffers

can fit evenly into a single memory page. As a result of this choice the number of packet

buffers is two times the number of pages allocated for the shared memory region (see figure

4.3). The packet buffers are numbered sequentially from zero. It is this buffer number that

allows both the application and Pnet to refer to the same packet data. Since network pack-

ets can be any size from a few tens of bytes to the full MTU the len field of the pnet_msg

structure tells the receiving context how big the actual packet is. Figure 4.4 gives a pictorial
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Figure 4.3: Pnet Buffers and Memory Pages

Figure 4.4: Pnet Overview

representation of the Pnet’s architecture.

4.1.2 Interactions

With an understanding of the data structures involved it is now possible to walk through the

use of Pnet from loading the kernel module through to communication between Pnet and

the application process.

The Pnet kernel module takes two parameters at module load time. These two parameters

are the number of packet buffers and the MTU size for the interface. Internally Pnet takes

the passed MTU size and finds the next biggest power of two and uses that as the buffer

size. Using a buffer size which is a power of two ensures that an even number of buffers

fit into a single memory page. This buffer size is then multiplied by the number of buffers

to get the size of the shared memory region for each process. The process of allocating the

shared memory region occurs when the application opens the Pnet device. Each application

shares a unique shared memory region with Pnet. Once loaded the Pnet network interface

needs to be configured with an IP subnet just like a new Ethernet interface requires. This

can be accomplished with any of the normal network configuration tools.
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The first step for an application wishing to use Pnet is to open the /dev/pnet character device.

The file descriptor returned after a successful call to open is the only information required

to communicate with Pnet. Once the character device has been opened the application asks

Pnet for the current buffer configuration through the use of the ioctl operations described

earlier. The configuration data read includes the MTU of the Pnet network interface, the

number of buffers and the size of each buffer. With this information in hand the process is

able to allocate the shared memory region. This is accomplished by using the mmap system

call on the Pnet character device. Finally the prototype implementation of Pnet requires that

the application inform Pnet which IP address it wishes to use. This is also accomplished

with an ioctl system call.

Once the configuration parameters have been determined and the shared memory allocated,

Pnet and the application are almost ready to transfer data packets. A key aspect of the Pnet

design which has not been discussed up to this point is buffer ownership. Shared memory

is a very convenient way to transfer large amounts of data between contexts because it

removes the need to copy the data. However, using shared memory in this way requires

communication between the sending and receiving contexts to indicate which one currently

has permission to write to a particular portion of the shared memory. In the case of Pnet

the portions of interest are the individual packet buffers. In order to arbitrate access to

the buffers Pnet employs the concept of buffer ownership. Only one of either Pnet or the

application process can own a given packet buffer at any time. The owner of a buffer has

permission to write to the that buffer. For example, when Pnet receives a packet from the

network it places that packet into a packet buffer it owns and then informs the application

that a particular packet buffer contains packet data. It does this by sending a pnet_msg

with the type field set to PNET_MSG_DATA_BUF. In so doing Pnet also transfers the

ownership of the packet buffer to the application. The process works identically when the

application wishes to transmit a packet. The prototype implementation of Pnet assumes that

the application process owns all packet buffers when the shared memory region is allocated.

Thus one of the first operations taken by the application is to pass ownership of some of the

buffers to Pnet. Passing packet buffer ownership without indicating that the buffer contains

a packet is accomplished by setting the type field of pnet_msg to PNET_MSG_FREE_BUF.
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The current design of Pnet relies on the application process to ensure that Pnet has free

buffers available. This is accomplished by passing free buffers to Pnet when the number

of buffers owned by the application is over a threshold and by requested free buffers from

Pnet when the number of buffers owned by the application drops below a threshold.

Packet transfer between Pnet and the application consists of reading and writing pnet_msg

structures across the Pnet character device. Both sides of the communication receive pack-

ets to process via messages which have the type field set to PNET_MSG_DATA_BUF. In

order to improve performance the Pnet character device reduces the number of required sys-

tem calls by allowing the batching of pnet_msg structures when both reading and writing.

Each time a system call is executed a context switch between application context and kernel

context occurs. Minimizing context switches is important to achieving good performance.

The application wishing to send more than one packet buffer to Pnet simply writes several

pnet_msg structures in a single write call. Similarly, reading from the Pnet character device

may return several pnet_msg structures to the application process. When this happens the

amount of data read by the application process will be a multiple of the size of pnet_msg.

The application then loops over each message and processes the associated packets while

avoiding system call overhead. One difficulty that a character device interface introduces

to application developers is that the read system call is usually a blocking operation. This

poses a problem for applications using Pnet because there may be other work to be done

while waiting for new packets to arrive. One solution to this problem is for the application

to use threads but this is not strictly necessary because the Pnet character device also sup-

ports the poll and select system calls. These system calls, which are very commonly used

in network applications, allow an application to be notified when a file descriptor becomes

readable. The Pnet the character device becomes readable when a new packet arrives.

The overwhelming advantage of the Pnet design presented in this chapter is that the entire

PAN is contained within a single kernel module. This allows Pnet to be built and distributed

separately from the rest of the kernel. If Pnet required modification of the kernel’s network-

ing features or even if it could not be built as a module any user wishing to use the IP per

process model would be forced to rebuild the entire kernel. Although not exceptionally

difficult, this is a task beyond the skill of most users and many system administrators.
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Another advantage of using the existing kernel networking infrastructure is the ability to

make use of the Linux kernel’s advanced firewall and network quality of service function-

ality. As discussed in section 3.1.4 it is important to be able to place some restrictions on

applications using the IP per process model. Since Pnet is just another network interface

from the perspective of the kernel it is trivial to add firewall rules which restrict applica-

tions using the IP per process model to certain transport protocols or to communicating

with only a predefined set of IP addresses. This implementation of the IP process model

also makes it very easy to apply bandwidth limits to each application; this is a task that is

very difficult using the in-kernel network stack. The Linux kernel supports a large number

of network packet queuing disciplines which can be used to prioritize packets or apply rate

limitations. These queuing disciplines can be attached to any network interface making

them also applicable to Pnet interfaces.

4.2 User-space Networking Library (UNL)

Once Pnet is in place to provide applications access to the PAN an user-level network stack

is required. In this prototype the protocol implementations are collectively referred to as

the user-space networking library (UNL) [47]. UNL provides an implementation of the IP,

UDP, ICMP and TCP protocols for use with Pnet as well as an abstraction of the low level

Pnet interfaces.

UNL has been implemented in C and makes extensive use of the GLib library [17]. GLib

provides C programmers with many tools to speed development including data structures

such as lists and queues, performance conscious memory allocators, debugging utilities

as well as IO and main loop abstractions. Of particular interest is the main loop support.

The GMainLoop is a high level wrapper on top of the select and poll system calls. This

wrapper is used to create event based programs. As such, it is used extensively within

Gtk+ based GUI programs. Using GMainLoop consists of adding event sources such as

the Pnet character device and specifying callback functions to be executed when certain

conditions occur. For example callback functions can be registered to be executed when the
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Figure 4.5: UNL Stack

Pnet character device becomes readable or writable. GMainLoop also allows for callback

functions to be called at set intervals. By using GMainLoop UNL is able to achieve non-

blocking behavior without requiring the complexity of threads. However, there is no reason

that UNL’s protocol processing could not occur in a separate thread if that is required by the

application developer. Indeed, there may be performance benefits to performing protocol

processing in a thread separate from the rest of the application.

As can been seen in figure 4.5 UNL is conceptually designed in layers like most other

protocol implementations. In the case of UNL the lowest layer in the stack is specific to

Pnet. This layer provides the higher layers with a more convenient interface to Pnet than

reading and writing pnet_msg structures and it also registers the Pnet character device with

the main loop and specifies which functions to call when new packets arrive. The input

function at this layer has one job which is to determine what network layer protocol the

received packet is carrying and then to call that protocol’s input function. The prototype

implementation of UNL only supports the IP protocol at present.

The next stage in processing an incoming packet is the IP protocol implementation’s input

function. This function’s job is to verify the checksum field of the IP header is valid and

to determine the next step in protocol processing. If the packet contains ICMP data the IP

protocol implementation will process that data and respond accordingly. At present only

a limited portion of the ICMP protocol is supported. Supported features include ICMP

echo requests and echo replies (pings). If the packet is carrying UDP or TCP data then the
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appropriate input function for these protocols is called.

Each transport layer input function performs the necessary protocol processing for its proto-

col. For UDP this processing is very simple. In contrast TCP has very complex processing

to perform when a packet is received. At approximately 2500 lines of C UNL’s implemen-

tation of TCP forms a significant portion of the entire code base and is definitely the most

complicated part of UNL. The details of this implementation while complex and interesting,

are not directly related to the IP per process model so they are not discussed here.

The final stage of protocol processing is passing the data to the application. It is important to

note that the entirety of UNL’s processing is occurring within the application. In this context

passing data to the application refers to passing data from UNL to the application making

use of the IP per process model. In both UNL’s TCP and UDP implementations passing data

to the application occurs through an interface which serves a function similar to the sockets

API found in traditional network programming. After creating an instance of a transport

protocol such as TCP or UDP the application creates a socket instance which represents a

particular connection or packet flow. For each socket the application registers a callback

function to be called when data is ready to be read from that particular socket. Parameters

passed to the callback function allow the application to determine exactly which connection

the data belongs to in situations when the developer uses a single callback function for many

sockets. It is in this final callback function that the application performs its own work.

Transmitting data from the application through UNL and to the network functions much the

same as data reception except that the function calls flow down the protocol stack instead

of up. When an application writes to a socket the underlying transport protocol’s transmit

function is called. For UDP this will result in an immediate call to the IP protocol’s transmit

function after the UDP packet has been created. In the case of TCP the situation is much

more complex because each data write to a TCP socket does not necessarily result in a

network packet. When the TCP transmit function is called the TCP implementation queues

the data and if all of the necessary conditions are met it generates a TCP segment and calls

the IP transmit function. The IP layer’s transmit function adds the IP header to the data it

has received and then calls the UNL function that abstracts writing to the Pnet character
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Figure 4.6: UnlBufDesc Structure Definition

device. Once passed to Pnet the packet is out of the application’s and hence UNL’s control.

Since TCP is required to generate acknowledgment packets and perform other work at

set intervals the TCP implementation also registers a timeout callback with the main loop

instance. When this callback is executed TCP iterates over all TCP connections to see if

any maintenance work is necessary or if any new segments must be sent.

An important task assigned to UNL beyond the protocol processing is the management and

manipulation of the packet buffers shared between Pnet and the application. In order to

manage packet buffers UNL represents each packet buffer with an UnlBufDesc instance.

All of the required UnlBufDesc instances are created at start-up after UNL has determined

the total number of packet buffers by querying Pnet. The definition of the UnlBufDesc

structure can be found in figure 4.6 and the meaning of each field can be found in table 4.4.

As discussed earlier, an application using Pnet is responsible for ensuring that Pnet always

has free packet buffers available to receive packets. The UnlBufDesc structure aids in this

task by maintaining a reference count for each packet buffer. When a packet is received

from Pnet, UNL sets the reference count in the associated UnlBufDesc structure to one.

This indicates that UNL is holding a reference to this packet buffer so it cannot be given to

Pnet as a free buffer. After a protocol layer has completed processing the packet there are

two possibilities. The first is that the packet must be passed to a higher layer protocol for

further processing. This is accomplished by passing a pointer to the UnlBufDesc structure to

the higher layer protocol’s input function. Since this all happens within UNL no reference

count manipulation happens in this case. The second possibility is that the current protocol
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Field Description
buf_num The number of the underlying packet buffer this UnlBufDesc represents.

Used for communication with Pnet.
ref_cnt The current reference count for this packet buffer. This value is greater

than one if some part of the UNL or the application is using the buffer.
Once the value reaches zero the buffer is placed on the free buffer list.

head A pointer to the start of the packet buffer in the shared memory region.
data A pointer to the beginning of the data to be processed in the packet buffer.

This pointer changes as the packet moves through the protocol stack.
tail A pointer to the end of the data to be processed in the packet buffer. Often

used to determine the length of the packet.
end A pointer to the end of the packet buffer in the shared memory region.
h1 A pointer to the link layer header in the packet buffer.
h2 A pointer to the network layer header in the packet buffer.

Table 4.4: Fields of struct UnlBufDesc

layer is the final destination of the packet and once processing is complete, the packet buffer

should be marked as free. UNL accomplishes this by decrementing the reference count on

the UnlBufDesc structure by one using the unl_bufdesc_unref function. Not only does

this function decrement the reference count it also returns the packet buffer to the list of

free buffers if the reference count reaches zero. By making use of reference counts it is

possible for a part of UNL or even the application itself to continue to use the packet buffer

after protocol processing is complete. A possible use of this technique is for the application

to maintain a reference to the packet in order to later transmit the exact same data without

having to inspect or copy that data.

As can be seen from the definition of the UnlBufDesc structure presented figure 4.6 and

table 4.4 this structure is used for more than just maintaining a reference count on the

underlying packet buffer. In fact, it is the pointer fields within the UnlBufDesc structure

which each layer of the protocol processing uses to indicate where its data begins. For

example, after a received packet has been processed by the Pnet specific portion of UNL

the data field in the associated UnlBufDesc structure is set to point to the beginning of

the IP header within the packet buffer. This tells the IP implementation where to begin

processing. Once the IP layer has processed the IP header it moves the data pointer to

point to the beginning of the IP payload and then calls the appropriate transport layer input
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Figure 4.7: Processing a Packet with UnlBufDesc

function. This process continues until the packet eventually reaches the application’s read

callback with the data pointer pointing to the data payload (see figure 4.7). The UnlBufDesc

structure is also used during packet construction. When TCP for example wishes to send a

packet, it requests a free buffer which has the data pointer set such that there is room at the

beginning of the buffer to prepend all of the necessary headers. The TCP implementation

then creates the TCP header starting at the data pointer and copies the data to be sent into

the packet buffer. Creating space for the IP header simply involves decrementing the size

of the IP header from the data pointer and constructing the header at that point. The chief

advantage of manipulating pointers to the packet buffer in this way is performance. This

mechanism allows for the data to move through the stack without requiring data copying at

each stage. The UnlBufDesc design is similar, but simpler, than the Skb and mbuf packet

structures used by the Linux and BSD kernel protocol implementations respectively.
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4.3 Limitations of the Prototype Implementation

A real world deployment of the IP per process model would require a method to assign

individual applications an IP address and maintain a list of free and available address on the

PAN. The prototype implementation presented in this thesis relies on the application to tell

Pnet which IP address it wishes to use. There is, at present, nothing to stop two applications

from specifying the same IP address. Adding the necessary duplicate address and subnet

validity checks to Pnet should not be difficult. Address allocation and maintenance could be

accomplished entirely within Pnet or through an user-level policy daemon which functions

much like a DHCP server on a LAN subnet. This policy daemon could also be responsible

for inserting the necessary firewall rules to ensure application and network protection as

well as configuring any required QoS rules.

Although the protocol implementations in UNL serve as a good prototype of the IP per

process model they are by no means complete or ready for production deployment. The

IP implementation supports the features necessary to demultiplex packets to a higher layer

protocol such as TCP or UDP but does not implement more advanced features such as IP

defragmentation. There are no known reasons why IP fragmentation or any other part of

the IP protocol could not be implemented in UNL. The UNL implementation of UDP is

basically complete but since UDP is such a trivial protocol this is to be expected. The most

significant amount of development time has been dedicated to UNL’s implementation of

TCP. The TCP protocol implementation supports most of the features found commodity

operating system network stacks including: congestion control including slow start and

congestion avoidance, MSS option, timestamp option, window scale option, triple duplicate

acknowledgment detection and fast retransmission, protection against wrapped sequence

numbers (PAWS) and RTT calculation. The only major TCP feature missing from UNL’s

TCP implementation is selective acknowledgment support (SACK).
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4.4 High level Language Protocol Implementation

For the purposes of the testing and evaluation in the next chapter Pnet and UNL can be

considered two parts of the same prototype. In reality Pnet and UNL are two very separate

projects. In fact any application that can read from a file descriptor can make use of Pnet

to send and receive whole IP packets. In order to demonstrate this flexibility a very small

IP protocol implementation has been constructed using the Python programming language.

Python is a very popular and powerful high level programming language. This small IP

implementation contains only the features necessary to respond to ICMP echo requests.

What makes this particular implementation interesting is that the in-kernel network stack

model makes it impossible to develop network or transport layer protocols in a language

such as Python. The combination of Pnet and a high level language has the potential to

greatly reduce the work necessary to prototype a new transport layer protocol. The Python

IP/ICMP echo implementation is only about two hundred lines long.

4.5 Summary

In order to demonstrate the IP per process model a prototype system has been created. This

system is named Pnet/UNL in reference to its two components: Pnet and UNL. Pnet is a

Linux kernel module which gives applications the ability to send and receive complete IP

packets thereby bringing end-to-end connectivity to applications. The second component

of the prototype is the Userspace Networking Library (UNL). UNL provides an implemen-

tation of the IP, ICMP, UDP and TCP protocols for use with Pnet. Both Pnet and UNL are

written in C. The Pnet Linux kernel module consists of approximately 1400 lines of C and

UNL is approximately 8400 lines.

Communication between Pnet and the application process occurs through a combination

of a character device which is created when the Pnet kernel module is loaded and shared

memory. Network packets are not written to or read from the character device. Instead

packets are transferred via a shared memory region allocated when the application opens the

Pnet character device. Both Pnet and the application create packets in this shared memory
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region and signal when a packet is ready to be processed by writing to the character device.

This design avoids copying the packet each time it crosses between Pnet and the application.

Built on top of the low level communication mechanisms provided by Pnet, UNL provides

applications with network protocol implementations and an interface similar to the standard

sockets API.
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Chapter 5

Prototype Evaluation

5.1 Goals

The primary goal of the IP per process model is to bring end-to-end connectivity to the

ends of the network, the applications. The Pnet/UNL prototype of the PAN based IP per

process model has been designed to achieve this goal. The experiments described in this

chapter show the application process in direct communication with a remote network entity

and the operating system kernel functioning as a simple IP router. This demonstrates the

desired end-to-end connectivity. A secondary goal of the Pnet/UNL implementation is to

achieve a level of performance in terms of latency and throughput which is respectable

in comparison to the Linux network stack. Since the Linux network stack is generally

accepted to be the fastest network stack available [22] this sets a very high and perhaps

over-optimistic performance target given the lack of protocol development experience and

in-depth performance optimization knowledge of the author.

5.2 Experimental Environment

All experiments presented in this chapter were carried out on two Intel based servers. The

specifications for these servers can be found in table 5.1. The two servers were connected

directly by a cross-over Ethernet cable thereby avoiding the use of an Ethernet switch. The

choice to avoid an intermediate Ethernet switch was made because of the lack of admin-
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CPU Cache Front side bus RAM
Intel 945 Pentium D @ 3.4 GHz 2 MB per processor 800 MHz 2 GB

Table 5.1: Experimental System Specifications

istrative access to a high-quality Ethernet switch and to simplify the testing environment

as much as possible. The operating system installed on both servers is Fedora-Core 6 run-

ning the 2.6.20-1.2952 Linux kernel. All experiments were performed with one of the two

servers running the UNL network stack and the second server using the Linux network

stack through simple socket API based programs. Using the existing Linux network stack

on one end of all experiments ensures a level of correctness in the UNL IP, ICMP and TCP

implementations.

The experiments presented in this chapter evaluate Pnet/UNL based on latency and TCP

throughput. These results are compared against the Linux network stack operating under

the same conditions. Evaluating the latency of the Pnet/UNL prototype is important be-

cause protocol processing in this design uses two separate contexts, kernel and user-space.

In contrast, the in-kernel network stack design performs all processing within a single con-

text. Measuring latency aims to quantify the effects of queuing and scheduling between

the two contexts in the Pnet/UNL design. TCP throughput is evaluated to provide a real

world benchmark and because throughput is the most common measure of networking per-

formance.

Each of the latency and throughput experiments were performed at two levels. The first

level has the servers otherwise idle and second level places the servers under load. System

load was generated with the openssl speed command. This command runs a series of en-

cryption related benchmarks. Two copies of this benchmark were executed simultaneously

for the duration of the experiments to ensure that both CPUs were under load.

5.2.1 ICMP Ping Latency Experiment

UNL contains a very simple implementation of the ICMP protocol which supports ICMP

echo requests and echo responses (pings). In order to measure the latency introduced by
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Pnet and UNL this experiment sends five hundred ICMP echo requests to the destination

server spaced .2 ms apart. The average round trip time (RTT) of the five hundred responses

are presented in the following graphs. There is nothing special about the choice to send

five hundred echo requests at .2 ms intervals other than it provides a relatively large number

of samples spaced over a reasonable time frame of one hundred seconds. The ICMP ping

latency experiments were carried out at 100 Mbps and 1 Gbps.

5.2.2 TCP Data Throughput Experiment

The TCP data throughput experiments were performed with both UNL sending data and

UNL receiving data as well as at network data rates of 100 Mbps and 1 Gbps. These

experiments were also repeated with the system under load. In all cases the UNL stack was

listening for new connections from a client program which uses the standard Linux TCP

stack through the sockets API. Throughput was calculated as the time required to transfer a

1.5 gigabyte file. The graphs presented here use the average taken from five replications of

each experiment. The graphs for the experiments where the system is unloaded also present

system utilization percentages as reported by the vmstat utility.

In order to eliminate the effects of hard disk speed from the results all throughput tests were

performed with the sender reading from a RAM drive and the receiver writing to a RAM

drive. This is especially important for the 1 Gbps throughput tests. The highest throughout

rate observed during these tests was 110 megabyte/sec. A simple disk speed benchmark

performed using the hdparm program shows that the disks used in the experimental servers

are only capable of approximately 56 megabyte/sec of sustained throughput. Therefore,

without using RAM drives the hard disks could potentially become the throughput bottle-

neck.

The throughput experiments compare Pnet/UNL against two configurations of the Linux

network stack. These two configurations are with network interface (NI) offload enabled

and with it disabled. Many modern Ethernet network interfaces include the ability to per-

form some portion of the network stack’s work. The goal of these techniques is to save

CPU resources. The Intel e1000 network interface used in the experimental servers supports
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transmission and receive checksumming, scatter-gather and TCP segmentation offload. The

results presented as “Linux (no offload)” have all of these features disabled.

5.3 Results

5.3.1 ICMP Ping Latency

Figure 5.1: ICMP RTT at 100 Mbps

Figure 5.2: ICMP RTT at 100 Mbps Under Load
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Figure 5.3: ICMP RTT at 1 Gbps

Figure 5.4: ICMP RTT at 1 Gbps Under Load
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5.3.2 TCP Data Throughput

Figure 5.5: TCP Receive Throughput at 100 Mbit/sec

Figure 5.6: TCP Receive Throughput at 100 Mbit/sec Under Load
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Figure 5.7: TCP Transmission Throughput at 100 Mbit/sec

Figure 5.8: TCP Transmission Throughput at 100 Mbit/sec Under Load



78

Figure 5.9: TCP Receive Throughput at 1 Gbps

Figure 5.10: TCP Receive Throughput at 1 Gbps Under Load
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Figure 5.11: TCP Transmit Throughput at 1 Gbps

Figure 5.12: TCP Transmit Throughput at 1 Gbps Under Load

5.4 Discussion

The ICMP RTT experiments show that the Pnet/UNL prototype has slightly more latency

than the Linux network stack. In the case of the 100 Mbit experiment the difference in

latency is 0.021 ms when not under load and 0.034 ms when under load. The difference

between the Linux network stack and UNL at 1 Gbit is even smaller. When not under load
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the difference at 1 Gbit is 0.018 ms and under load the difference is 0.014 ms. The fact that

the Pnet/UNL prototype adds a small amount of time to the ICMP RTT is not surprising.

The Linux network stack implements ICMP within the kernel. This allows the kernel to

respond to the ICMP echo request without any kernel to user-space context switches. In

the case of Pnet/UNL the received packet must be queued by Pnet for reception by the

UNL application. Only after the kernel wakes the UNL application will the ICMP packet

be processed and the response packet sent. Transmission of the packet also necessitates

another user-space to kernel space context switch. Given the extra context switches that are

required in the Pnet/UNL prototype the observed RTT difference appears quite reasonable.

The TCP experiments measure the TCP throughput and system load of the Pnet/UNL

prototype. In all of the experiments performed at 100 Mbps the throughput achieved by

Pnet/UNL is slightly lower than that of the Linux network stack. However, the difference

is very small. When receiving data the Pnet/UNL prototype was only 0.379 megabyte/sec

slower than the Linux kernel and 0.380 megabyte/sec slower than the Linux kernel with

NI offload features disabled. When the system was placed under load Pnet/UNL was 0.377

megabyte/sec slower than the Linux kernel stack with NI offload both enabled and disabled.

The system load percentage when receiving data at 100 Mbps was 7.98% for Pnet/UNL,

2.91% for Linux and 3.52% for Linux with NI offload features disabled. When trans-

mitting data at 100 Mbps Pnet/UNL is 0.050 megabyte/sec slower than Linux and 0.044

megabyte/sec slower than Linux with NI offload features disabled. System utilization val-

ues found in this experiment show Pnet/UNL to use 3.63% of system resources while the

Linux stack uses 2.15% and Linux without offload features uses 2.58%. When placed under

load Pnet/UNL is 0.104 megabyte/sec slower than Linux and 0.105 megabyte/sec slower

than Linux with NI offload features disabled. Given the results of these experiments per-

formed with a network data rate of 100 Mbps Pnet/UNL appears to compare very well

against the Linux kernel both in terms of data throughput and system utilization.

The second set of throughput experiments were performed with a network data rate of 1

Gbps. In these experiments the performance gap between the Linux network stack and the

Pnet/UNL prototype widens. When receiving data at 1 Gbps Pnet/UNL achieved a data rate

of 87.006 megabyte/sec which is 79% of the 110.425 megabyte/sec achieved by the Linux



81

kernel and 81% of 106.847 megabyte/sec achieved by the Linux kernel with NI offload dis-

abled. When placed under load the throughput of both configurations of the Linux kernel

drops slightly but the throughput of the Pnet/UNL prototype drops to 49.451 megabyte/sec.

This experiment shows the largest difference between Pnet/UNL and the Linux kernel of

any experiment performed. When transmitting data at 1 Gbps Pnet/UNL achieves 94.715

megabyte/sec. The Linux network stack achieves 108.167 megabyte/sec and 108.478 with

NI offload disabled. Transmitting under load does not suffer the same performance conse-

quences that the receive experiments experienced. In this experiment Pnet/UNL achieves

93.194 megabyte/sec while the Linux kernel achieves 105.917 megabyte/sec and 108.455

megabyte/sec with NI offload disabled.

Unfortunately, the current Pnet/UNL implementation contains a race condition which man-

ifests itself as a stalled TCP data transfer. This race condition only happens when receiving

data under load at 100 Mbps or during the 1 Gbps receive test. Four stalled transfers were

observed when collecting the five samples used for the 100 Gbps under load experiment

and two stalled transfers were observed when collecting the five samples used for the 1

Gbps receive experiment. During testing it is not uncommon for this bug to not appear for

many trial runs only to reappear during a number of tests at a later time. The effect of this

race condition is that an acknowledgment segment is transmitted in which some of the TCP

header fields contain values which should be seen in segments from the other end of the

connection. This happens after tens or hundreds of thousands of packets have been sent.

Often the TCP checksum verification detects these corrupted packets and drops them. How-

ever, when only the TCP timestamp option fields are wrong the checksum value computed

is still valid but the reversed timestamp values stall the connection. The reason that the

connection stalls and never recovers is that the remote TCP peer uses the timestamp values

to detect old packets in the network. Once the remote TCP receives an erroneous timestamp

it ignores all of the TCP segments received with the proper timestamp value because these

segments appear to be very old. An extensive amount of time has been invested isolating

the effects of this bug but its cause has yet to be found.

There are many possible reasons why the performance of Pnet/UNL is lower than that

of the Linux kernel. Certainly two major reasons are the lack of performance tuning of
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Pnet/UNL and the extensive development work that has gone into the Linux network stack

by a large number of talented people over many years. An important goal for the design of

the Pnet/UNL prototype was simplicity. In order to achieve this goal simple data structures

which are easy to understand and debug were used throughout the implementation. For

example the data structure used to implement UNL’s TCP segment reassembly buffer is a

simple linked list. Also, the current design of Pnet uses very fine grained locking over its

data structures. In retrospect this fine grained locking may be a performance problem not

a benefit. Another design issue that may be affecting performance is the lack of a fast path

also known as header prediction in UNL’s TCP implementation. Most TCP implementa-

tions avoid fully processing a received packet if it matches a few criteria which identify it

as the next segment that is expected. This feature can significantly reduce TCP overhead

[4].

It is also worth noting that the TCP throughput results may be affected more by the quality

of the TCP protocol implementation than the overhead inherit in Pnet/UNL. Creating a

TCP implementation which performs well is a very difficult proposition. For example, if a

required acknowledgment packet is not transmitted or processed in a timely manor the data

transmission can stall thereby reducing the throughput of the connection.

In all of the TCP throughput experiments the difference in system utilization values between

the Linux stack with and without NI offload features enabled are quite apparent. NI offload

features clearly have performance benefits. At present the design of Pnet/UNL does not

take advantage of any NI offload features. It is not clear how some offload features such

as scatter gather memory operations would be useful to Pnet/UNL however other features

such as checksum computation could be beneficial. An obvious optimization of Pnet/UNL

would be to avoid recomputing the checksum on received packets when the Linux kernel

passes packets to Pnet that have already had their checksum verified.
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5.5 Summary

The goal of the Pnet/UNL prototype is to provide an implementation of the IP per process

model which brings end-to-end network connectivity to applications and does so with a

reasonable level of performance. The Pnet/UNL prototype implements the IP, ICMP and

TCP protocols completely within the application. The ability of these user-level protocol

implementations to communicate successfully with a remote Linux network stack shows

that this model does indeed achieve its primary goal of bringing end-to-end connectivity to

applications. The performance testing presented in this chapter shows that the Pnet/UNL

prototype is very competitive with the Linux network stack when used on a 100 Mbps

network. However, when the same testing is performed on a 1 Gbit network the perfor-

mance gap between Pnet/UNL and the Linux network stack becomes wider. It is clear that

Pnet/UNL will require further performance tuning to be competitive at this high data rate.
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Chapter 6

Conclusions and Future Work

Over the last decade and a half the Internet has shown itself to be a powerful platform for

innovation at almost all levels of its design. This great flexibility comes in large part from

the application of the end-to-end principle in the design of the Internet. The end-to-end

principle aims to place as much intelligence and processing as possible at the ends of the

network rather than in the core as is found in networks such as the PSTN. This design allows

for greater innovation and flexibility because new protocols and services can be introduced

into the network by any single endpoint without requiring that intermediate network nodes

be modified.

The usual definition of an end of the Internet is a single IP enabled device and by extension

the operating system executing on that device. The operating system is included in this

definition because it is the operating system kernel which usually contains the network pro-

tocol implementations that allow applications to communicate over the network. However,

the actual end of any network communication is not the operating system kernel. The oper-

ating system kernel exists to manage hardware so there is little reason for a remote process

to communicate directly with the kernel. Rather, remote processes are actually in commu-

nication with processes executing on the local system. The kernel is simply acting as an

intermediary between the actual ends of the communication; the two application processes.

The sockets API is the interface most often used between applications and the in-kernel

network protocol implementations. This interface allows the application to pass data to the

kernel to be packaged and transmitted as well as allowing the reception of data from the ker-
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nel after network protocol processing has been completed. The problem with this interface

is that the application is isolated from the network and limited to using only the network

protocols and features supported by the operating system kernel. When the application is

considered the end of the network this model breaks end-to-end connectivity.

6.1 Summary of Contributions

This thesis offers a network stack model which makes use of user-level networking to

achieve end-to-end connectivity for applications and which also has benefits over other

user-level networking designs. This is accomplished by assigning each application an IP

address and reducing the operating system kernel’s involvement with the network packet

flow to that of an IP router. The IP per process model results in a flexible, easy to modify

network stack which allows the application to customize the network protocol implemen-

tations in almost any way desirable. The advantages of the IP per process model over other

user-level networking designs come from a simplicity of design achieved through the ap-

plication of the end-to-end principle. This allows problems such as packet demultiplexing

and shared layer four port space to be simplified or sidestepped entirely.

In order to demonstrate the IP per process model a prototype implementation has been

created called Pnet/UNL. This prototype consists of two components: a Linux kernel mod-

ule named Pnet and an user-level implementation of the IP, ICMP, UDP, and TCP protocols

named the Userspace Networking Library (UNL). Evaluation of this prototype shows that it

achieves its primary goal of bringing end-to-end connectivity to applications. Performance

testing shows Pnet/UNL to be very competitive with the Linux network stack at 100 Mbps.

However, the performance gap widens when testing is performed on a 1 Gbps network.

6.2 Future Work

The Pnet/UNL prototype of the IP per process model serves as a good initial demonstration

of the model but it is missing some features necessary for serious use. One obvious miss-
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ing feature is the ability for Pnet to enforce which IP address the application process uses.

The present design allows the application using Pnet to choose any IP address it wishes.

One possible way to solve this problem is to introduce a user-level policy daemon which

Pnet could consult when applications request IP addresses. This could also be implemented

within Pnet itself but more complicated policies such as static IP assignments make a sep-

arate user-level daemon a better choice. Another useful task that could be assigned to the

policy daemon is managing firewall and QoS policies to achieve network and application

protection from malicious applications using Pnet.

Another area of UNL that warrants future work is the TCP implementation. While the

current implementation is sufficient as a prototype the addition of TCP selective acknowl-

edgments and the introduction of a TCP fast path would be very beneficial to production

use. Further verification that the congestion control behavior is correct and compatible with

other TCP implementations is also desirable. The ability to make use of NI offload features,

especially checksum computation, may also be of benefit to UNL.

Section 2.6 discussed the historical relationship between user-level networking and memory

swapping. It was also noted that none of the user-level networking works found in the

computing literature have studied the effects of memory swapping on user-level networking

with modern computer hardware. This could prove to be a very interesting research project.

It would be very interesting to prototype an implementation of the IP per process model

which modifies the operating system network stack so that each application’s IP address can

be assigned to a local network interface. As discussed in section 3.3 this design would be

especially interesting in an IPv6 network where the size of the subnet assigned to each LAN

makes the random generation of IP addresses for each application possible. Implementation

of this model likely involves more extensive modification of the existing network stack than

was required when implementing the PAN model used in Pnet/UNL prototype.

As a longer term project the Pnet/UNL prototype could serve as a base for a much larger

project investigating alternate transport layer protocols and network stack designs. There

are many interesting areas worth investigating. One such area is a reliable transport protocol

designed for lossy environments such as wireless links. This is an area where the perfor-
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mance of TCP could be improved upon. Another interesting project would be to develop

a reliable transport protocol which is simpler than TCP. According to [22] the complexity

of TCP is tripled simply to deal with complications associated with in-kernel networking.

Pnet/UNL will also be useful as a tool for experimenting with alternate interfaces between

the network protocol implementations and the application. A simple example of an alter-

native interface may include making use of share semantics instead of the copy semantics

found in the sockets API. More drastic changes could include a records based or virtual

connection API. Transport layer protocols and the interface between the application and the

network protocol implementation have remained relatively static for a long time. Pnet/UNL

and the IP per process model in general make experimentation in these areas much easier.
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Appendix A

Results Data

A.1 Receive at 100 Mbps

Real (sec) Idle (%) User (%) System (%) Throughput (megabyte/sec)

134.626 91.963 2.889 5.352 10.849

134.674 91.970 2.897 5.404 10.845

134.706 92.116 2.868 5.335 10.843

134.593 92.014 2.933 5.389 10.852

134.547 92.022 2.911 5.397 10.855

134.629 92.017 2.900 5.375 10.849

Table A.1: Receive at 100 Mbps UNL
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Real (sec) Idle (%) User (%) System (%) Throughput (megabyte/sec)

130.124 97.091 0.221 2.893 11.224

130.074 97.068 0.137 2.816 11.229

130.073 97.091 0.221 2.839 11.229

130.075 97.076 0.175 2.824 11.229

130.073 97.114 0.244 2.816 11.229

130.084 97.088 0.200 2.838 11.228

Table A.2: Receive at 100 Mbps Linux

Real (sec) Idle (%) User (%) System (%) Throughput (megabyte/sec)

130.080 96.530 0.204 3.477 11.228

180.076 96.518 0.150 3.383 11.229

130.072 96.442 0.137 3.511 11.229

130.074 96.435 0.198 3.503 11.229

130.075 96.462 0.166 3.477 11.229

130.075 96.477 0.171 3.470 11.229

Table A.3: Receive at 100 Mbps Linux (no offload)
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A.2 Receive at 100 Mbps Under Load

Real (sec) Throughput (megabyte/sec)

134.258 10.879

134.721 10.841

134.879 10.829

134.560 10.854

134.548 10.855

134.548 10.852

Table A.4: Receive at 100 Mbps Under Load UNL

Real (sec) Throughput (megabyte/sec)

130.078 11.228

130.074 11.229

130.077 11.229

130.073 11.229

130.073 11.229

130.075 11.229

Table A.5: Receive at 100 Mbps Under Load Linux
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Real (sec) Throughput (megabyte/sec)

130.075 11.229

130.074 11.229

130.075 11.229

130.074 11.229

130.076 11.229

130.075 11.229

Table A.6: Receive at 100 Mbps Under Load Linux (no offload)

A.3 Transmit at 100 Mbps

Real (sec) Idle (%) User (%) System (%) Throughput (megabyte/sec)

130.997 96.323 0.992 2.789 11.150

130.985 96.436 0.947 2.812 11.151

130.978 96.424 0.962 2.795 11.151

130.980 96.325 1.000 2.795 11.151

131.002 96.333 0.954 2.810 11.149

130.988 96.368 0.971 2.800 11.150

Table A.7: Transmit at 100 Mbps UNL
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Real (sec) Idle (%) User (%) System (%) Throughput (megabyte/sec)

130.466 97.902 0.015 2.330 11.195

130.472 97.856 0.015 2.393 11.195

130.152 97.894 0.015 2.383 11.222

130.474 97.716 0.014 2.380 11.194

130.478 97.893 0.015 2.378 11.194

130.408 97.852 0.015 2.373 11.200

Table A.8: Transmit at 100 Mbps Linux

Real (sec) Idle (%) User (%) System (%) Throughput (megabyte/sec)

130.476 97.424 0.015 2.810 11.194

130.475 97.393 0.015 2.787 11.194

130.479 97.393 0.015 2.787 11.194

130.475 97.439 0.022 2.833 11.194

130.476 97.431 0.015 2.750 11.194

130.476 97.416 0.016 2.793 11.194

Table A.9: Transmit at 100 Mbps Linux (no offload)
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A.4 Transmit at 100 Mbps Under Load

Real (sec) Throughput (megabyte/sec)

130.895 11.158

135.113 10.810

130.868 11.161

130.891 11.159

130.862 11.161

131.726 11.090

Table A.10: Transmit at 100 Mbps Under Load UNL

Real (sec) Throughput (megabyte/sec)

130.477 11.194

130.477 11.194

130.476 11.194

130.477 11.194

130.479 11.194

130.477 11.194

Table A.11: Transmit at 100 Mbps Under Load Linux



94

Real (sec) Throughput (megabyte/sec)

130.471 11.195

130.470 11.195

130.474 11.194

130.469 11.195

130.468 11.195

130.470 11.195

Table A.12: Transmit at 100 Mbps Under Load Linux (no offload)

A.5 Receive at 1 Gbps

Real (sec) Idle (%) User (%) System (%) Throughput (megabyte/sec)

16.659 56.842 14.263 29.105 87.675

17.016 55.500 14.500 30.111 85.835

16.767 54.500 14.333 31.166 87.110

16.741 56.736 13.736 29.684 87.245

16.756 56.736 13.894 29.368 87.167

16.788 56.063 14.145 29.887 87.006

Table A.13: Receive at 1 Gbps UNL
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Real (sec) Idle (%) User (%) System (%) Throughput (megabyte/sec)

13.221 81.666 0.866 17.666 110.474

13.253 82.466 0.600 17.133 110.207

13.227 81.400 1.200 17.800 110.423

13.206 81.600 0.933 18.000 110.599

13.227 81.133 1.000 18.000 110.423

13.227 81.653 0.920 17.720 110.425

Table A.14: Receive at 1 Gbps Linux

Real (sec) Idle (%) User (%) System (%) Throughput (megabyte/sec)

13.847 72.266 0.933 27.333 105.479

13.462 73.400 1.000 25.933 108.496

13.851 73.312 0.875 26.250 105.449

13.336 73.333 0.933 25.933 109.521

13.872 71.600 1.000 27.867 105.289

13.674 72.782 0.948 26.663 106.847

Table A.15: Receive at 1 Gbps Linux (no offload)
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A.6 Receive at 1 Gbps Under Load

Real (sec) Throughput (megabyte/sec)

30.573 47.773

27.675 52.776

30.321 48.170

30.324 48.165

28.996 50.371

29.578 49.451

Table A.16: Receive at 1 Gbps Under Load UNL

Real (sec) Throughput (megabyte/sec)

13.305 109.776

13.810 105.762

13.215 110.524

13.883 105.206

13.210 110.566

13.485 108.367

Table A.17: Receive at 1 Gbps Under Load Linux
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Real (sec) Throughput (megabyte/sec)

13.733 106.355

13.913 104.979

13.850 105.456

13.505 108.150

13.897 105.100

13.780 105.100

Table A.18: Receive at 1 Gbps Under Load Linux (no offload)

A.7 Transmit at 1 Gbps

Real (sec) Idle (%) User (%) System (%) Throughput (megabyte/sec)

15.167 60.294 14.352 25.352 96.299

15.431 61.777 13.888 24.333 94.652

15.544 60.411 14.411 25.176 93.694

15.418 61.166 14.333 24.611 94.732

15.550 59.941 14.764 25.117 93.927

15.422 60.718 14.350 24.918 94.715

Table A.19: Transmit at 1 Gbps UNL
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Real (sec) Idle (%) User (%) System (%) Throughput (megabyte/sec)

13.312 83.633 1.133 15.200 109.718

13.558 83.266 1.133 15.733 107.728

13.543 83.800 1.133 15.066 107.847

13.555 83.533 1.133 15.266 107.751

13.550 83.666 1.066 15.266 107.791

13.504 83.580 1.120 15.306 108.167

Table A.20: Transmit at 1 Gbps Linux

Real (sec) Idle (%) User (%) System (%) Throughput (megabyte/sec)

13.474 69.666 1.333 28.933 108.399

13.477 69.733 1.333 28.633 108.375

13.474 69.866 1.333 28.733 108.399

13.428 69.312 1.250 29.437 108.771

13.468 69.866 1.333 28.800 108.447

13.464 69.689 1.316 28.907 108.478

Table A.21: Transmit at 1 Gbps Linux No Offload
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A.8 Transmit at 1 Gbps Under Load

Real (sec) Throughput (megabyte/sec)

15.291 95.518

15.394 94.879

16.539 88.311

15.768 92.629

15.434 94.633

15.685 93.194

Table A.22: Transmit at 1 Gbps Under Load UNL

Real (sec) Throughput (megabyte/sec)

13.610 107.316

13.544 107.839

13.827 105.632

13.534 107.919

14.478 100.882

13.799 105.917

Table A.23: Transmit at 1 Gbps Under Load Linux
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Real (sec) Throughput (megabyte/sec)

13.438 108.690

13.421 108.827

13.454 108.560

13.604 107.363

13.420 108.835

13.467 108.455

Table A.24: Transmit at 1 Gbps Under Load Linux (no offload)
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